4.4 Article

Na,K-ATPase Atp1a4 isoform is important for maintaining sperm flagellar shape

Journal

JOURNAL OF ASSISTED REPRODUCTION AND GENETICS
Volume 38, Issue 6, Pages 1493-1505

Publisher

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s10815-021-02087-3

Keywords

Na,K-ATPase alpha 4; Isoform; Sperm flagellum; Sperm volume; Outer dense fiber protein; Dynein intermediate chain I; Glutathione peroxidase

Funding

  1. National Institutes of Health [HD102623]

Ask authors/readers for more resources

The study investigated the role of Atp1a4 in controlling sperm morphology, revealing that Atp1a4 plays a crucial role in maintaining the proper shape of the sperm flagellum through osmotic control and structurally related mechanisms. Atp1a4 knockout sperm exhibited a bend in the flagellum with cytoplasm dilation and fusion of the plasma membrane, as well as defects in axoneme and peri-axonemal structures. Additionally, Atp1a4 KO sperm showed abnormal response to osmotic challenge with decreased viability and reduced expression of key sperm structural proteins.
Purpose The aim of this study is to investigate the mechanisms by which the testis specific Na,K-ATPase ion transport system (Atp1a4) controls sperm morphology and shape. Methods Sperm from wild-type (WT) and Atp1a4 knockout (Atp1a4 KO) mice were analyzed morphologically, using light, transmission, and scanning electron microscopy; and functionally, applying sperm osmotic challenge and viability tests. In addition, a sperm proteomic study was performed. Results Light microscopy confirmed that sperm lacking Atp1a4 present a bend at the junction of the mid- and principal piece of the flagellum. This bend had different degrees of angulation, reaching occasionally a complete flagellar retroflexion. The defect appeared in sperm collected from the cauda epididymis, but not the epididymal caput or the testis. Transmission and scanning electron microscopy revealed a dilation of the cytoplasm at the site of the bend, with fusion of the plasma membrane in overlapping segments of the flagellum. This was accompanied by defects in the axoneme and peri-axonemal structures. Sperm from Atp1a4 KO mice showed an abnormal response to hypoosmotic challenge with decreased viability, suggesting reduced capacity for volume regulation. Exposure to Triton X-100 only partially recovered the flagellar bend of Atp1a4 KO sperm, showing that factors other than osmotic regulation contribute to the flagellar defect. Interestingly, several key sperm structural proteins were expressed in lower amounts in Atp1a4 KO sperm, with no changes in their localization. Conclusions Altogether, our results show that Atp1a4 plays an important role in maintaining the proper shape of the sperm flagellum through both osmotic control and structurally related mechanisms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available