4.7 Article

Effects of p-type (Ag, Cu) dopant on the electronic, optical and photocatalytic properties of MoS2, and impact on Au/Mo100-x-yAgxCuyS2 performance

Journal

JOURNAL OF ALLOYS AND COMPOUNDS
Volume 863, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2020.158366

Keywords

First principals; P-type doping; Thin films; Schottky diode; Photocatalytic

Funding

  1. Begum Rokeya University, Rangpur, Ragpur, Bangladesh

Ask authors/readers for more resources

MoS2 is an alternative to graphene with intriguing properties, requiring modification for achieving p-MoS2 and complementary device applications. Doping with Ag and Ag-Cu has been investigated both theoretically and experimentally, revealing enhanced absorption in the visible region and confirmation of p-type MoS2 characteristics.
MoS2 is an alternative of graphene due to its intriguing properties and it is necessary to modify the properties for achieving p-MoS2 and complementary device applications. Doping is one of the most prevalent techniques for modification of materials properties and fabricating p-MoS2. Herein, we report on Ag and Ag-Cu doped MoS2 investigated by theoretical and experimental studies. Detailed study of DFT highlights the confirmation of p-type MoS2. The band gap can be tuned from 1.21 to 0.51 eV (theoretically) and 1.92-1.30 eV (experimentally). The enhancement of absorption in the visible region attributed to Ag and Ag-Cu doping. The conduction band (CB) edge potential is smaller in negative than H+/H-2 (0.0 eV) for undoped, Ag = 2.5% and Ag-Cu (Ag = 2.5, Cu = 10%) doped MoS2, hence the photogenerated electrons can weakly reduce H+ to produce H-2. While the deeper valence band (VB) edge potential than O-2/H2O (1.23 eV) confirms that the holes created upon photon absorption strongly shows the ability for water oxidation. However for other doping both potential edges are more positive which insights strong oxidative material. Interestingly, the theoretical calculation suggests that the CB edge potential should be upward shifting for enhancing the photocatalytic activity of MoS2. EDX and XPS measurements disclose the presence of Mo, S, Ag and Cu elements in the thin films. Furthermore, decreasing forward current and shifting threshold voltage (VT) toward higher voltage in (Ag, Cu) doped Au/Mo100-x-yAgxCuyS2 insights p-type MoS2. Therefore, these demonstrations could be extended its applications to be enable high-performance electronic and optoelectronic devices. (C) 2020 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available