4.7 Article

Bioconjugated solid lipid nanoparticles (SLNs) for targeted prostate cancer therapy

Journal

INTERNATIONAL JOURNAL OF PHARMACEUTICS
Volume 599, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.ijpharm.2021.120416

Keywords

Solid lipid nanoparticles; Curcumin; Transferrin; Prostate cancer; Bioconjugation

Ask authors/readers for more resources

The study developed transferrin bioconjugated solid lipid nanoparticles for targeted delivery of curcumin to prostate cancer cells, showing significant anti-proliferative activity and enhanced apoptotic effects, both in vitro and in vivo.
Prostate cancer is one of the prominent causes of cancer mortality in men all over the world and a challenge to treat. In this study, transferrin (Tf) bioconjugated solid lipid nanoparticles (SLNs) were developed and loaded with curcumin (CRC) for active targeting of prostate cancer cells. Curcumin is an anticancer agent, but its clinical applications are impeded due to the poor water solubility and bioavailability. Prepared blank Tf-SLNs showed minimal cytotoxicity while Tf-CRC-SLNs demonstrated significant in-vitro anti-proliferative activity compared to CRC-SLNs alone. Cellular uptake of Tf-CRC-SLNs were found to be significantly higher (p < 0.05/=0.01) compared to unconjugated SLNs or pure drug alone. Bioconjugated Tf-CRC-SLNs also showed improved early apoptotic and late apoptotic or early necrotic populations (6.4% and 88.9% respectively) to CRC-SLNs and CRC solution. Most importantly, in-vivo studies with Tf-CRC-SLNs in mice bearing prostate cancer revealed significant tumour regression (392.64 mm(3) after 4 weeks, p < 0.001) compared to the control group. The findings of this work encourage future investigations and further in-vivo clinical studies on the potential of bioconjugated SLNs for cancer cure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available