4.5 Article

Isorhamnetin Alleviates High Glucose-Aggravated Inflammatory Response and Apoptosis in Oxygen-Glucose Deprivation and Reoxygenation-Induced HT22 Hippocampal Neurons Through Akt/SIRT1/Nrf2/HO-1 Signaling Pathway

Journal

INFLAMMATION
Volume 44, Issue 5, Pages 1993-2005

Publisher

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s10753-021-01476-1

Keywords

isorhamnetin; OGD; R; high glucose; Akt; SIRT1; Nrf2; HO-1; hypoxia and reoxygenation

Ask authors/readers for more resources

This study found that isorhamnetin can alleviate diabetes-exacerbated ischemia/reperfusion-induced brain injury by modulating the Akt/SIRT1/Nrf2/HO-1 signaling pathway, inhibiting cell apoptosis, inflammatory response, and oxidative stress.
This study is aimed at exploring the potential of isorhamnetin in protection against diabetes-exacerbated ischemia/reperfusion-induced brain injury and elucidating its action mechanism. After establishment of the model of high glucose (HG)-aggravated oxygen-glucose deprivation and reoxygenation (OGD/R), HT22 cell viability was detected by CCK-8. Lactate dehydrogenase (LDH) activity, casapase-3 activity, and oxidative stress-related markers in HT22 cells were detected by corresponding commercial kits. The apoptosis of HG-treated HT22 cells following OGD/R was observed with TUNEL staining. The level of pro-inflammatory cytokines was examined by ELISA. The expression of Akt/SIRT1/Nrf2/HO-1 signaling-related proteins was assayed by Western blot. The results showed that HG noticeably worsened the OGD/R-induced apoptosis of HT22 cells. Isorhamnetin relieved the HG-aggravated OGD/R-induced apoptosis, inflammatory response, and oxidative stress of HT22 cells. Isorhamnetin alleviated the HG-aggravated OGD/R injury in HT22 cells through Akt/SIRT1/Nrf2/HO-1 signaling pathway. Meanwhile, treatment with Akt inhibitor LY294002 reversed the protective effects of isorhamnetin against HG-aggravated OGD/R injury in HT22 cells. In a conclusion, Isorhamnetin alleviates HG-aggravated OGD/R in HT22 hippocampal neurons through Akt/SIRT1/Nrf2/HO-1 signaling pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available