4.8 Article

Life-history traits are poor predictors of species responses to flow regime change in headwater streams

Journal

GLOBAL CHANGE BIOLOGY
Volume 27, Issue 15, Pages 3547-3564

Publisher

WILEY
DOI: 10.1111/gcb.15673

Keywords

body size; climate change; ephemeral streams; extirpation; intermittency; invertebrates; mBACI; phenology; rivers; species traits

Funding

  1. Murdoch University

Ask authors/readers for more resources

Recent climate change is impacting the timing, duration, and volume of river and stream flows globally, leading to changes in aquatic biota. Some species are facing extinction while others are adapting in various ways, highlighting the limitations of using life history to predict species responses to climate-driven flow regime changes.
Recent climate change is altering the timing, duration and volume of river and stream flows globally, and in many regions, perennially flowing rivers and streams are drying and switching to intermittent flows. Profound impacts on aquatic biota are becoming apparent, due in part to the strong influence of flow regime on the evolution of life history. We made predictions of life-history responses for 13 common aquatic invertebrate species (four caddisflies, five mayflies, two stoneflies, a dragonfly and an amphipod), to recent flow regime change in Australian mediterranean climate streams, based on historic studies in the same streams. Size distributions, phenology, voltinism and synchrony were compared, revealing five main responses. More than half of the species were restricted to perennially flowing streams and were absent from those that had switched to intermittent flows (including all four caddisfly species). These formerly common species are at risk of extinction as climate change progresses. Two mayfly species had divergent responses in voltinism and synchrony, and one relied on drought micro-refuges to persist. One stonefly species changed development timing to suit the new flow regime, and the amphipod species retreated to subterranean refuges. Two formerly common species were not detected at all during 2016-2017. In addition, a new mayfly species and a caddisfly species proliferated under new flow regimes, because they had life histories suited to brief hydroperiods. Importantly, previous life history rarely predicted species' actual responses to climate-driven flow regime change, raising doubts about the veracity of predictions based on species traits. This is because a species' potential for flexible phenology or growth rate is not necessarily indicated by life-history traits.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available