4.7 Article

Effect of protic ionic liquid treatment on the pyrolysis products of lignin extracted from oil palm biomass

Journal

FUEL
Volume 291, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2021.120133

Keywords

Renewable energy; Thermo-gravimetric analysis (TGA); Extracted lignin; Oil palm biomass (OPB); Pyrolysis-GC; MS analysis; Ionic liquid pretreatment; Thermal kinetics

Funding

  1. Engineering and Physical Sciences Research Council (EPSRC)
  2. Universiti Teknologi PETRONAS, Malaysia

Ask authors/readers for more resources

The study demonstrates that the use of aprotic ionic liquid pyridinium formate [PyFor] for lignin extraction from oil palm biomass increases its thermal stability, affecting its carbon content and calorific value. In addition, the [PyFor] extracted lignins contain more phenolic and aromatic compounds, making them suitable for use as biofuels.
The lignin extracted from biomass acts as a renewable energy source with a vast range of value-added applications. Aprotic ionic liquid pyridinium formate [PyFor] has been successfully used for lignin extraction from various morphological parts of oil palm biomass (OPB) plant such as empty fruit bunches (EFB), palm mesocarp fibre (PMF) and palm kernel shell (PKS). In this study, the pyrolysis of [PyFor] extracted lignin samples is studied in the kinetic regime using thermogravimetric analyzer in a non-isothermal manner. Three kinetic models such as; Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS) and Starink were employed to determine activation energies (Ea) of [PyFor] extracted lignin samples. The average Ea for EFB lignin using FWO, KAS and Starink methods were 28.44, 23.74 and 23.94 kJ/mol respectively while for PMF and PKS lignins were 62.97, 55.28, 56.83 kJ/mol and 129.20, 122.93, 119.28 kJ/mol respectively. Starink method was further used to determine the pre-exponential factor and thermodynamic parameters for kraft lignin (KL) and [PyFor] extracted lignins. The thermo-kinetics and thermodynamic parameters indicate that [PyFor] treatment increased the thermal stability of extracted lignins. Calorific and CHNS values of both OPB and [PyFor] extracted lignins showed that [PyFor] treatment affected the lignin and carbon content of EFB, PMF and PKS lignins. The calorific values of the PKS lignin (28.20 kJ/g) were found to be higher than those of EFB (27.05 kJ/g) and PMF (27.40 kJ/ g) lignins. Elemental analysis showed that the higher calorific values of PKS lignin are due to higher carbon content. Py-GC/MS analysis indicated that [PyFor] extracted lignins provided more phenolic and aromatic contents with the least acid concentrations making them suitable biofuels. It was concluded that [PyFor] treatment provided a potential way to improve the thermal conversion efficiency of extracted lignins.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available