4.6 Review

The role of structural dynamics in GPCR-mediated signaling

Journal

FEBS JOURNAL
Volume 288, Issue 8, Pages 2461-2489

Publisher

WILEY
DOI: 10.1111/febs.15841

Keywords

7TM receptors; allosteric regulation; arrestin; biased signaling; G protein‐ coupled receptors; G proteins; ligand efficacy; protein dynamics

Ask authors/readers for more resources

G protein-coupled receptors (GPCRs) are crucial for human physiology regulation and recent research has revealed their high dynamics and ability to sample multiple conformational states in response to different ligands, impacting complex signaling behavior.
G protein-coupled receptors (GPCRs) play critical roles in the regulation of human physiology in response to a wide array of different extracellular stimuli and thus represent one of the largest groups of therapeutic drug targets. Recent advances in the structural characterization of GPCRs in different conformations and in complex with G proteins and arrestins have provided important insights into the mechanism and function of GPCRs. However, in order to truly understand the molecular basis of the functional versatility of GPCRs, the structural snapshots obtained by X-ray crystallography or cryo-EM need to be complimented with information about the conformational dynamics of receptors and their signaling complexes. In the last decade, a combination of biophysical approaches and computational studies has been utilized to examine the molecular motions of GPCRs and their transducer complexes and how they are regulated by ligands of different efficacy and bias. These studies revealed that GPCRs are highly dynamic allosteric proteins that can sample multiple conformational states. Ligands with distinct signaling profiles not only impact the conformational landscape of GPCRs but also of the receptor-engaged G proteins and arrestins. The conformational dynamics of GPCRs and their signaling complexes and the ligand-dependent bias sampling of distinct functional states are important underlying principles behind the complex signaling behavior of GPCRs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available