4.5 Article

A novel analgesic approach to optogenetically and specifically inhibit pain transmission using TRPV1 promoter

Journal

BRAIN RESEARCH
Volume 1609, Issue -, Pages 12-20

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.brainres.2015.03.008

Keywords

Pain; Nociceptor; Optogenetic; Analgesic; TRPV1; ArchT

Categories

Funding

  1. Southeast University [985]
  2. National Science Foundation of China [81271239]

Ask authors/readers for more resources

Chronic pain is a pathological condition that results in significant loss of life quality, but so far no specific treatment for chronic pain has been developed. Currently available analgesia drugs are either not specific enough or have severe side effects. Therefore a non-invasive approach with high specificity to inhibit nociception becomes essential. In this study, a recombinant virus (AAV5-TRPV1-ArchT-eGFP) was constructed and injected into the mouse dorsal root ganglion (DRG). The Transient Receptor Potential Vanilloid type 1 (TRPV1) channel promoter was used to selectively express inhibitory light-sensitive pump ArchT (the archaerhodopsin from Halorubrum strain TP009) in nociceptive DRG neurons. The successful transfer of ArchT gene was confirmed by a robust expression of green florescent protein in the DRG neurons. In vivo behavioral tests demonstrated that both the mechanical paw withdrawal threshold and the radiant heat evoked paw withdrawal latency were significantly increased upon illumination by a 532 nm green laser light to the paw of a viral-vector injected mice, while the same laser light did not induce any observable change in naive mice. In conclusion, we have established a novel analgesic approach that can noninvasively and selectively inhibit pain transmission using an acute and controllable optogenetics method. This study may shed light on the application of a novel optogenetic strategy for the treatment of pain. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available