4.3 Article

Da Cheng Qi Decoction Alleviates Cerulein-Stimulated AR42J Pancreatic Acinar Cell Injury via the JAK2/STAT3 Signaling Pathway

Journal

Publisher

HINDAWI LTD
DOI: 10.1155/2021/6657036

Keywords

-

Funding

  1. Medical research project of Hongkou Health Committee [Hongwei2001-02, Hongwei1903-04]
  2. Shanghai University of Traditional Chinese Medicine [2019LK098, 2020LK080, 2020LK081]
  3. Subject of Traditional Chinese Medicine of Hongkou District Health Committee [HKQ-ZYY-2020-04]
  4. Development of traditional medicine project of Hongkou District Health Committee [HGY-MGB-2018-01-08]
  5. Shanghai Rising Stars of Medical Talent Youth Development Program [2019YXRC06-18]
  6. Construction Project of Shanghai New Interdisciplinary Program of Traditional Chinese Medicine [18ZYYJCXK-136]

Ask authors/readers for more resources

The study showed that DCQD could protect against cerulein-induced inflammation and reduce the secretion of pancreatic biochemical markers, potentially by mediating the activation of the JAK2/STAT3 signaling pathway.
Background. Acute pancreatitis (AP) is a common acute abdomen inflammation, characterized by the dysregulation of digestive enzyme production and secretion. Many studies have shown that Da Cheng Qi Decoction (DCQD) is a secure, effective prescription on AP. In this study, cerulein-stimulated AR42J cells damage model was established to further explore the feasibility and underlying mechanism of DCQD as a potential inhibitor of JAK2/STAT3 pathway for the treatment of AP. Methods. Cell viability of DCQD was measured using a cell counting Kit-8 assay. Pancreatic biochemical markers such as amylase, lipase, and C-reactive protein production were measured by assay kits, respectively. Cytokines (TNF-alpha, IL-6, IL-10, and IL-1 beta) were assayed by ELISA. Protein location and protein expression were detected by immunofluorescence staining and Western blotting, respectively. Gene expression was assessed by real-time PCR. For mechanistic analysis of the effect of DCQD on JAK2/STAT3 signaling pathway, selective JAK2 inhibitor (Fedratinib) and STAT3 inhibitor (Stattic) as well as STAT3 activator (Garcinone D) were used. Results. DCQD protected cells by regulating cerulein-induced inflammation and reducing the secretion of pancreatic biochemical markers. Moreover, DCQD could not only inhibit the nuclear translocation of p-STAT3, but also decrease the mRNA expression of JAK2 and STAT3 as well as the ratio of p-JAK2/JAK2 and p-STAT3/STAT3 in protein level. Additionally, DCQD could regulate the mRNA and protein expression of JAK2/STAT3 downstream effectors, Bax and Bcl-XL. The activated effect of cerulein on JAK2/STAT3 pathway was also reversed by JAK2 inhibitor Fedratinib or STAT3 inhibitor Stattic. And the overexpression of JAK2/STAT3 pathway, via STAT3 activator Garcinone D, did exert damage on cells, which bore a resemblance to cerulein. Conclusion. The activation of JAK2/STAT3 pathway may play a key role in the pathogenesis of cerulein-stimulated AR42J pancreatic acinar cell injury. DCQD could improve inflammatory cytokines and cell injury, which might be mediated by suppressing the activation of JAK2/STAT3 signaling pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available