4.8 Article

Tunable Covalent Organic Frameworks with Different Heterocyclic Nitrogen Locations for Efficient Cr(VI) Reduction, Escherichia coli Disinfection, and Paracetamol Degradation under Visible-Light Irradiation

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 55, Issue 8, Pages 5371-5381

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.0c07857

Keywords

-

Funding

  1. National Natural Science Foundation of China [42025706]
  2. Fund for Innovative Research Group of NSFC [51721006]

Ask authors/readers for more resources

This study synthesized five types of COFs with different nitrogen positions and found that the photocatalytic performance for Cr(VI) photoreduction, Escherichia coli inactivation, and paracetamol degradation varied depending on the nitrogen locations. COF-PDZ showed the best performance due to improved quantum efficiency, lower energy barriers, larger energy gaps, and stronger affinity to Cr(VI). COF-PDZ also demonstrated great stability through multiple regeneration and reuse cycles.
Covalent organic frameworks (COFs) have great application potentials in photocatalytic water treatment. By using p-phenylenediamine with different numbers and locations of heterocyclic nitrogen atoms as a precursor, five types of COFs with different nitrogen positions were synthesized. We found that Cr(VI) photoreduction,Escherichia coli inactivation, and paracetamol degradation by COFs were heterocyclic nitrogen location-dependent. Particularly, the photocatalytic performance for all three tested pollutants by five types of COFs followed the order of the best performance for COF-PDZ with two ortho position heterocyclic N atoms, medium for COF-PMD with two meta position heterocyclic N atoms, and COF-PZ with two para position heterocyclic N atoms, and COF-PD with a single heterocyclic N atom, the worst performance for COF-1 without a heterocyclic N atom. Compared to the other COFs, COF-PDZ contained improved quantum efficiency and thus enhanced generation of electrons. The lower energy barriers and larger energy gaps of COF-PDZ contributed to its improved quantum efficiencies. The stronger affinity to Cr(VI) with lower adsorption energy of COF-PDZ also contributed to its excellent Cr(VI) reduction performance. By transferring into a more stable keto form, COF-PDZ showed great stability through five regeneration and reuse cycles. Overall, this study provided an insight into the synthesis of high-performance structure-dependent COF-based photocatalysts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available