4.4 Article

Epicuticular Wax Rice Mutants Show Reduced Resistance to Rice Water Weevil (Coleoptera: Curculionidae) and Fall Armyworm (Lepidoptera: Noctuidae)

Journal

ENVIRONMENTAL ENTOMOLOGY
Volume 50, Issue 4, Pages 948-957

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/ee/nvab038

Keywords

plant-insect interactions; wax mutants; rice; epicuticular wax; host plant resistance

Categories

Funding

  1. Louisiana Rice Research Board
  2. USDA National Institute of Food and Agriculture, Hatch funds [1011556]
  3. U.S. Department of Agriculture, Agriculture Research Service Research [2032-21000-023-00D]

Ask authors/readers for more resources

The study showed that mutants with reduced epicuticular waxes in rice plants have weaker resistance to rice water weevil and fall armyworm, indicating that epicuticular wax traits play a role in rice resistance to these pests.
Plant structural traits can act as barriers for herbivore attachment, feeding, and oviposition. In particular, epicuticular waxes (EWs) on the aerial surfaces of many land plants offer protection from biotic and abiotic stresses. In rice (Oryza sativa L.), mutations that reduce EWs have been previously reported. However, whether such mutations affect rice water weevil (Lissorhoptrus oryzophilus Kuschel) and fall armyworm (Spodoptera frugiperda Smith) performance has not been investigated yet. These pests cause significant economic problems in important rice-producing areas of the United States. The aim of our study was to characterize the EWs of EW mutants and wild-type rice plants by gas chromatography-mass spectrometry and compare the resistance of mutant and wild-type plants against rice water weevil and fall armyworm. We hypothesized that mutants with reduced EWs would have weaker resistance to pests than wild-type plants. Three mutant lines (6-1A, 7-17A, and 11-39A) and their wild-type parent (cv. 'Sabine') were used to test this hypothesis. Levels of EWs were significantly lower in mutant lines than in the wild-type, and qualitative differences in EW composition were also observed. Reduction in EWs significantly affected performance of insects in experiments conducted under greenhouse conditions. Experiments with rice water weevils were conducted in arenas in which females were given a choice of the mutants and the wild-type for oviposition. Number of first instars emerging from the three EW mutants (an indication of oviposition preference) was higher on the three EW mutants than on wild-type plants with normal wax levels. Similarly, in no-choice experiments using whole plants or detached leaves, weight gains of armyworms on leaves were higher on the mutant lines than on the wild-type. These results indicate that EW traits are involved in rice resistance to weevils and armyworms. Understanding the plant traits that contribute to resistance to rice pests will be helpful for the development of resistant varieties for reducing pest insect damage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available