4.7 Article

Comparative investigation of concentrated photovoltaic thermal-thermoelectric with nanofluid cooling

Journal

ENERGY CONVERSION AND MANAGEMENT
Volume 235, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2021.113968

Keywords

CPVT-TE; Energy; Exergy; Nanofluid; Thermal management

Funding

  1. Sharjah Electricity and Water Authority (SEWA)
  2. Sustainable Energy Development Research Group
  3. Research Institute for Science and Engineering at the University of Sharjah
  4. French Investments for Future Program [ANR-18-EURE-0016]

Ask authors/readers for more resources

The study compared the performance of a traditional CPVT solar system with and without the addition of thermoelectric generator modules (TEG) using numerical simulations. The results showed that the CPVT system integrated with TEG showed improvements in electrical power generation during both summer and winter days, while reducing the thermal power output. Overall, integrating thermoelectric generator modules into the CPVT system showed better energy utilization in terms of both electricity and heat.
Thermoelectric modules are capable of converting heat into electric energy via the Seebeck effect. Therefore the addition of the thermoelectric generator modules (TEG) between the PV module and the absorber plate inside a concentrated photovoltaic thermal (CPVT) solar collector can be a feasible way for to enhance their electrical generation. A comparison between the CPVT only system and CPVT system integrated with TEG (CPVT-TE) is conducted using numerical simulation. Therefore CPVT-TE with water and CPVT-TE with 0.5% graphene/water nanofluid is investigated. A transient study using the finite volume method is presented, and computation is performed for all the considered solar systems for a typical sunny day and cloudy day under London climatic conditions. The CPV and the outlet fluid temperatures, as well as, the energy and exergy calculations are carried out to assess the performance of all the considered solar systems. The results reveal that the improvements in the total electrical power generated by the CPVT-TE with 0.5% graphene/water nanofluid and CPVT-TE compared to CPVT collector are 11.15% and 9.77%, respectively for the summer day, while, that for the winter day is 5.14% and 4.58%, respectively. The reductions in the thermal power provided by the CPVT-TE with 0.5% graphene/water nanofluid and CPVT-TE compared to CPVT collector are 6% and 11.76%, for the summer day, while, that for the winter day are 4.86% and 10.53%, respectively. Moreover, the total exergies generated by 0.5% graphene/water nanofluid CPVT-TE and water CPVT-TE collectors increased by 4.88% and 0.68% respectively, for the summer day, while that for the winter day are 2.99% and 0.95% respectively, in comparison with the conventional CPVT system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available