4.7 Article

ALIX and ceramide differentially control polarized small extracellular vesicle release from epithelial cells

Journal

EMBO REPORTS
Volume 22, Issue 5, Pages -

Publisher

WILEY
DOI: 10.15252/embr.202051475

Keywords

ceramide; ESCRT; exosome; multivesicular body; small extracellular vesicle

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan [19K21174]
  2. Kao Foundation for Arts and Sciences
  3. MEXT [19H03220]
  4. Japan Science and Technology Agency (JST) CREST Grant [JPMJCR17H4]
  5. Grants-in-Aid for Scientific Research [19H03220] Funding Source: KAKEN

Ask authors/readers for more resources

The study demonstrates that different types of small extracellular vesicles, known as exosomes, are differentially secreted from the apical and basolateral sides of polarized epithelial cells. Two independent machineries are responsible for the polarized exosome release from epithelial cells.
Exosomes, important players in cell-cell communication, are small extracellular vesicles of endocytic origin. Although single cells are known to release various kinds of exosomes (referred to as exosomal heterogeneity), very little is known about the mechanisms by which they are produced and released. Here, we established methods of studying exosomal heterogeneity by using polarized epithelial cells and showed that distinct types of small extracellular vesicles (more specifically CD9- and CD63-positive, Annexin I-negative small extracellular vesicles, which we refer to as exosomes herein) are differentially secreted from the apical and basolateral sides of polarized epithelial cells. We also identify GPRC5C (G protein-coupled receptor class C group 5 member C) as an apical exosome-specific protein. We further demonstrate that basolateral exosome release depends on ceramide, whereas ALIX, an ESCRT (endosomal sorting complexes required for transport)-related protein, not the ESCRT machinery itself, is required for apical exosome release. Thus, two independent machineries, the ALIX-Syntenin1-Syndecan1 machinery (apical side) and the sphingomyelinase-dependent ceramide production machinery (basolateral side), are likely to be responsible for the polarized exosome release from epithelial cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available