4.6 Article

Tubular MoSSe/carbon nanotube electrodes for hybrid-ion capacitors

Journal

ELECTROCHIMICA ACTA
Volume 374, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2021.137971

Keywords

MoSSe; MoS2; Carbon nanotube; Hybrid-ion capacitors; Batteries

Funding

  1. KAIST

Ask authors/readers for more resources

The tubular MoSSe/CNT nanocomposites exhibit stable cyclability and excellent rate capability, making them promising electrodes for hybrid-ion capacitors.
We report the tubular shape of molybdenum sulfide selenide (MoSSe) alloy on the carbon nanotubes (CNTs) as lithium (Li) storage materials. Two to five layers of MoSSe alloy have an interlayer spacing of similar to 6.6 A and coaxially coat the CNT. After Li ion is intercalated to the MoSSe layers, Li2S, Li2Se, and metallic Mo nanoparticles are irreversibly deposited on the CNT electrodes by a chemical conversion process. Galvanostatic cycling tests perform Li2S/Li2Se faradaic reaction at similar to 2.2 V vs. Li/Li+ and capacitive processes below similar to 1.3 V arising from physical adsorption of Li+ on Mo, Li2S, and Li2Se nanoparticles, and electrolyte decomposition. As a result, tubular MoSSe/CNT electrodes exhibit stable cyclability for over 200 cycles, the capacity of 663 mAh g(-1), and excellent rate capability that is two-fold greater at 20 A g(-1) than that of the MoS2 sheet partially wrapping the CNT. It is attributed to stable Li2S/Li2Se redox reaction without any dissolution of polysulfides/polyselenides, respectively, low charge-transfer resistance, and retardation of electrolyte decomposition. These findings suggest that the tubular MoSSe/CNT nanocomposites act as promising electrodes for hybrid-ion capacitors. (c) 2021 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available