4.8 Article

18.4 % Organic Solar Cells Using a High Ionization Energy Self-Assembled Monolayer as Hole-Extraction Interlayer

Journal

CHEMSUSCHEM
Volume 14, Issue 17, Pages 3569-3578

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cssc.202100707

Keywords

hole-extraction interlayer; organic solar cells; photovoltaics; power conversion efficiency; self-assembled monolayer

Funding

  1. King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) [OSR-2018-CARF/CCF-3079, OSR-2019-CRG8-4095.3]
  2. Research Council of Lithuania [01.2.2-LMT-K-718-03-0040]

Ask authors/readers for more resources

Self-assembled monolayers based on Br-2PACz, 2PACz, and MeO-2PACz were investigated as hole-extracting interlayers in organic photovoltaics. OPV cells using ITO/Br-2PACz anodes exhibited the highest power conversion efficiency due to the significantly higher work function of the ITO/Br-2PACz electrode, leading to improved hole transport and longer carrier lifetimes.
Self-assembled monolayers (SAMs) based on Br-2PACz ([2-(3,6-dibromo-9H-carbazol-9-yl)ethyl]phosphonic acid) 2PACz ([2-(9H-Carbazol-9-yl)ethyl]phosphonic acid) and MeO-2PACz ([2-(3,6-dimethoxy-9H-carbazol-9-yl)ethyl]phosphonic acid) molecules were investigated as hole-extracting interlayers in organic photovoltaics (OPVs). The highest occupied molecular orbital (HOMO) energies of these SAMs were measured at -6.01 and -5.30 eV for Br-2PACz and MeO-2PACz, respectively, and found to induce significant changes in the work function (WF) of indium-tin-oxide (ITO) electrodes upon chemical functionalization. OPV cells based on PM6 (poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione)]) : BTP-eC9 : PC71BM ([6,6]-phenyl-C71-butyric acid methyl ester) using ITO/Br-2PACz anodes exhibited a maximum power conversion efficiency (PCE) of 18.4 %, outperforming devices with ITO/MeO-2PACz (14.5 %) and ITO/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT : PSS) (17.5 %). The higher PCE was found to originate from the much higher WF of ITO/Br-2PACz (-5.81 eV) compared to ITO/MeO-2PACz (4.58 eV) and ITO/PEDOT : PSS (4.9 eV), resulting in lower interface resistance, improved hole transport/extraction, lower trap-assisted recombination, and longer carrier lifetimes. Importantly, the ITO/Br-2PACz electrode was chemically stable, and after removal of the SAM it could be recycled and reused to construct fresh OPVs with equally impressive performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available