4.7 Review

Endocrine disrupting chemicals and metabolic disorders in the liver: What if we also looked at the female side?

Journal

CHEMOSPHERE
Volume 268, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.129212

Keywords

Endocrine disrupting chemicals; Liver; Sex-dimorphism; Estrogen; Growth hormone; Gut microbiota

Funding

  1. INSERM
  2. University of Lyon 1 [INSERM U1060]

Ask authors/readers for more resources

This review highlights the association between EDCs and metabolic disorders, emphasizing the importance of sex differences in the response of metabolic organs to EDCs. The study also points out the significant differences in endocrine and metabolic aspects of the liver between males and females.
Endocrine disrupting chemicals (EDCs) are linked to the worldwide epidemic incidence of metabolic disorders and fatty liver diseases, which affects quality of life and represents a high economic cost to society. Energy homeostasis exhibits strong sexual dimorphic traits, and metabolic organs respond to EDCs depending on sex, such as the liver, which orchestrates both drug elimination and glucose and lipid metabolism. In addition, fatty liver diseases show a strong sexual bias, which in part could also originate from sex differences observed in gut microbiota. The aim of this review is to highlight significant differences in endocrine and metabolic aspects of the liver, between males and females throughout development and into adulthood. It is also to illustrate how the male and female liver differently cope with exposure to various EDCs such as bisphenols, phthalates and persistent organic chemicals in order to draw attention to the need to include both sexes in experimental studies. Interesting data come from analyses of the composition and diversity of the gut microbiota in males exposed to the mentioned EDCs showing significant correlations with hepatic lipid accumulation and metabolic disorders but information on females is lacking or incomplete. As industrialization increases, the list of anthropogenic chemicals to which humans will be exposed will also likely increase. In addition to strengthening existing regulations, encouraging populations to protect themselves and promoting the substitution of harmful chemicals with safe products, innovative strategies based on sex differences in the gut microbiota and in the gut-liver axis could be optimistic outlook. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available