4.8 Review

Electroceramics for High-Energy Density Capacitors: Current Status and Future Perspectives

Journal

CHEMICAL REVIEWS
Volume 121, Issue 10, Pages 6124-6172

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemrev.0c01264

Keywords

-

Funding

  1. Engineering and Physical Sciences Research Council [EP/L017563/1, EP/N010493/1]
  2. Henry Royce Institute for Advanced Materials through EPSRC [EP/R00661X/1, EP/S019367/1, EP/P02470X/1, EP/P025285/1]
  3. National Natural Science Foundation of China [51602060, 51402005]
  4. Functional Materials and Devices group from University of Sheffield
  5. EPSRC [EP/L017563/1, EP/P02470X/1, EP/N010493/1, EP/S019367/1] Funding Source: UKRI

Ask authors/readers for more resources

The importance of dielectric capacitors in high energy storage, specifically focusing on the development of traditional lead-free capacitors and dielectric ceramics for high-temperature applications. The paper discusses key factors to improve energy storage properties and emphasizes the need for new materials in high power/energy density capacitor applications in the future.
Materials exhibiting high energy/power density are currently needed to meet the growing demand of portable electronics, electric vehicles and large-scale energy storage devices. The highest energy densities are achieved for fuel cells, batteries, and supercapacitors, but conventional dielectric capacitors are receiving increased attention for pulsed power applications due to their high power density and their fast charge-discharge speed. The key to high energy density in dielectric capacitors is a large maximum but small remanent (zero in the case of linear dielectrics) polarization and a high electric breakdown strength. Polymer dielectric capacitors offer high power/energy density for applications at room temperature, but above 100 degrees C they are unreliable and suffer from dielectric breakdown. For high-temperature applications, therefore, dielectric ceramics are the only feasible alternative. Lead-based ceramics such as La-doped lead zirconate titanate exhibit good energy storage properties, but their toxicity raises concern over their use in consumer applications, where capacitors are exclusively lead free. Lead-free compositions with superior power density are thus required. In this paper, we introduce the fundamental principles of energy storage in dielectrics. We discuss key factors to improve energy storage properties such as the control of local structure, phase assemblage, dielectric layer thickness, microstructure, conductivity, and electrical homogeneity through the choice of base systems, dopants, and alloying additions, followed by a comprehensive review of the state-of-the-art. Finally, we comment on the future requirements for new materials in high power/energy density capacitor applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available