4.8 Review

Understanding the Effect of Water on CO2 Adsorption

Journal

CHEMICAL REVIEWS
Volume 121, Issue 13, Pages 7280-7345

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemrev.0c00762

Keywords

-

Funding

  1. Natural Sciences and Engineering Research Council of Canada (NSERC) [CRDPJ 543657-19]

Ask authors/readers for more resources

Carbon capture from large sources and ambient air is an effective strategy to mitigate greenhouse gas emissions. Among the various technologies, CO2 adsorption is a popular method due to its energy efficiency. The presence of water vapor in air and industrial gas streams rich in CO2 has a significant impact on CO2 adsorption, with water acting as both an inhibitor and promoter depending on the adsorbent used. Further research is needed to fully understand the effects of water on CO2 capture using different materials.
Carbon capture from large sources and ambient air is one of the most promising strategies to curb the deleterious effect of greenhouse gases. Among different technologies, CO2 adsorption has drawn widespread attention mostly because of its low energy requirements. Considering that water vapor is a ubiquitous component in air and almost all CO2-rich industrial gas streams, understanding its impact on CO2 adsorption is of critical importance. Owing to the large diversity of adsorbents, water plays many different roles from a severe inhibitor of CO2 adsorption to an excellent promoter. Water may also increase the rate of CO2 capture or have the opposite effect. In the presence of amine-containing adsorbents, water is even necessary for their long-term stability. The current contribution is a comprehensive review of the effects of water whether in the gas feed or as adsorbent moisture on CO2 adsorption. For convenience, we discuss the effect of water vapor on CO2 adsorption over four broadly defined groups of materials separately, namely (i) physical adsorbents, including carbons, zeolites and MOFs, (ii) amine-functionalized adsorbents, and (iii) reactive adsorbents, including metal carbonates and oxides. For each category, the effects of humidity level on CO2 uptake, selectivity, and adsorption kinetics under different operational conditions are discussed. Whenever possible, findings from different sources are compared, paying particular attention to both similarities and inconsistencies. For completeness, the effect of water on membrane CO2 separation is also discussed, albeit briefly.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available