4.7 Article

Functionalized construction of biochar with hierarchical pore structures and surface O-/N-containing groups for phenol adsorption

Journal

CHEMICAL ENGINEERING JOURNAL
Volume 410, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2020.127707

Keywords

Biochar; Adsorption; Phenol; Hierarchical pore; Functional groups

Funding

  1. National Natural Science Foundation of China [51906052]
  2. National Postdoctoral Program for Innovative Talents of China [BX20180086]
  3. China Postdoctoral Science Foundation [2020M670908]
  4. Heilongjiang Provincial Postdoctoral Science Foundation [LBH-Z19151]

Ask authors/readers for more resources

Through studying the adsorption of VOCs by biochar, it was found that chemically activated biochar constructed abundant functional groups on the pore surface, forming a hierarchical-functionalized pore structure, which has an ideal promotion effect on the adsorption of phenol.
Volatile organic compounds (VOCs) seriously endanger human health due to their bioaccumulation and carcinogenic effects, while biochar adsorption method is regarded as one of the most potential VOCs removal technologies. In order to clarify the structure-activity relationship of biochar adsorption of VOCs, corn straw was used as a biomass raw material for chemically activated biochar preparation and liquid-phase adsorption experiments. The simulations including molecular dynamics simulations and quantum chemical simulations were carried out to verify the relevant conclusions. The results show that abundant O-/N-containing functional groups are constructed on the pore surface of chemically activated biochar, forming a typical hierarchical-functionalized pore structure. The hierarchical-functionalized pore structure has an ideal promotion effect on the adsorption of phenol. Specifically, mesoporous structure on biochar surface mainly determines adsorption of phenol. The hydroxyl group strengthens the adsorption of phenol, due to the increased electrostatic effect, while N-6 enhances the van der Waals force for the change of adsorption site, thereby strengthening the adsorption of phenol. This work provides theoretical support for the practical application of biochar for efficient VOCs removal technology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available