4.7 Article

Integrated experimental phase equilibria study and thermodynamic modelling of the binary ZnO-Al2O3, ZnO-SiO2, Al2O3-SiO2 and ternary ZnO-Al2O3-SiO2 systems

Journal

CERAMICS INTERNATIONAL
Volume 47, Issue 15, Pages 20974-20991

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ceramint.2021.04.098

Keywords

Zincite; Alumina; Silica; Phase equilibria

Funding

  1. Nyrstar (Australia)
  2. Aurubis AG (Germany)
  3. Umicore NV (Belgium)
  4. Penoles (Mexico)
  5. Boliden (Sweden)
  6. Kazzinc Ltd, Glencore (Kazakhstan)
  7. Australian Research Council [LP150100783]
  8. Australian Research Council [LP150100783] Funding Source: Australian Research Council

Ask authors/readers for more resources

The phase equilibria of ZnO-SiO2, Al2O3-SiO2, and ZnO-Al2O3-SiO2 systems at liquidus temperature in air were characterized, with special attention given to the two different compositions of zincite phase. Various experimental techniques were used to accurately measure the concentrations of Zn, Al, Si, and Ca in different phases. The findings contribute to the development of thermodynamic models for the system.
Phase equilibria of the ZnO-SiO2, Al2O3-SiO2 and ZnO-Al2O3-SiO2 systems at liquidus were characterized at 1340-1740 degrees C in air. The ZnO-Al2O3 subsolidus phase equilibria were derived from the experiments with the SiO2- and CaO + SiO2-containing slags. High-temperature equilibration on silica or platinum substrates, followed by quenching and direct measurement of Zn, Al, Si and Ca concentrations in the phases with the electron probe X-ray microanalysis (EPMA) was used to accurately characterize the system. Special attention was given to zincite phase that was shown to consist of two separate ranges of compositions: round-shaped low-Al zincite (<2 mol.% AlO1.5) and platy high-Al zincite (4-11 mol.% AlO1.5). A technique was developed for more accurate measurement of the ZnO solubility in the low-ZnO phases (corundum, mullite, tridymite and cristobalite) surrounded by the ZnO-containing slag, using L-line for Zn instead of K-line, avoiding the interference of secondary X-ray fluorescence. Solubility of ZnO was found to be below 0.03 mol.% in corundum and cristobalite, and below 0.3 mol.% in mullite. Present experimental data were used to obtain a self-consistent set of parameters of the thermodynamic models for all phases in this system using FactSage computer package. The modified quasichemical model with two sublattices (Zn2+, Al3+, Si4+) (O2- ) was used for the liquid slag phase; the compound energy formalism was used for the spinel (Zn2+,Al3+)[Zn2+,Al3+,Va]2O2-4 and mullite Al3+2(Al3+,Si4+) (O2-,Va)5 phases; the Bragg-Williams formalism was used for the zincite (ZnO, Al2O3); other solid phases (tridymite and cristobalite SiO2, corundum Al2O3, and willemite Zn2SiO4) were described as stoichiometric. Present study is a part of the research program on the characterization of the multicomponent Pb-Zn-Cu-Fe-Ca-Si-O-S-Al-Mg-Cr-As-Sn-Sb-Bi-Ag-Au-Ni system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available