4.6 Review

Downstream processing for influenza vaccines and candidates: An update

Journal

BIOTECHNOLOGY AND BIOENGINEERING
Volume 118, Issue 8, Pages 2845-2869

Publisher

WILEY
DOI: 10.1002/bit.27803

Keywords

influenza; vaccine; manufacturing; purification; downstream processing

Funding

  1. Fundacao para a Ciencia e a Tecnologia [SFRH/BD/52302/2013, SFRH/BPD/121558/2016]
  2. Fundacao para a Ciencia e Tecnologia/Ministerio da Educacao e Ciencia [UIDB/04462/2020]
  3. Programa INTERFACE, Fundo de Inovacao, Tecnologia e Economia Circular (FITEC)
  4. Fundação para a Ciência e a Tecnologia [UIDB/04462/2020] Funding Source: FCT

Ask authors/readers for more resources

Efforts are underway to develop universal influenza vaccines that provide broad and long-lasting protection against multiple subtypes, including pandemics, while facing new downstream processing challenges. In order to accelerate vaccine development, new bioprocesses are being developed. Efficiency in downstream processing is increasing through improved unit operations and integrated processes to adapt to the new vaccine designs.
Seasonal and pandemic influenza outbreaks present severe health and economic burdens. To overcome limitations on influenza vaccines' availability and effectiveness, researchers chase universal vaccines providing broad, long-lasting protection against multiple influenza subtypes, and including pandemic ones. Novel influenza vaccine designs are under development, in clinical trials, or reaching the market, namely inactivated, or live-attenuated virus, virus-like particles, or recombinant antigens, searching for improved effectiveness; all these bring downstream processing (DSP) new challenges. Having to deal with new influenza strains, including pandemics, requires shorter development time, driving the development of faster bioprocesses. To cope with better upstream processes, new regulatory demands for quality and safety, and cost reduction requirements, new unit operations and integrated processes are increasing DSP efficiency for novel vaccine formats. This review covers recent advances in DSP strategies of different influenza vaccine formats. Focus is given to the improvements on relevant state-of-the-art unit operations, from harvest and clarification to purification steps, ending with sterile filtration and formulation. The development of more efficient unit operations to cope with biophysical properties of the new candidates is discussed: emphasis is given to the design of new stationary phases, 3D printing approaches, and continuous processing tools, such as continuous chromatography. The impact of the production platforms and vaccine designs on the downstream operations for the different influenza vaccine formats approved for this season are highlighted.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available