4.8 Article

Functionalized terahertz plasmonic metasensors: Femtomolar-level detection of SARS-CoV-2 spike proteins

Journal

BIOSENSORS & BIOELECTRONICS
Volume 177, Issue -, Pages -

Publisher

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2021.112971

Keywords

SARS-CoV-2 spike protein; COVID-19 pandemic; Terahertz plasmonic biosensors; Toroidal metasurfaces; Femtomole-level detection

Funding

  1. Science & Engineering Research Board (SERB)-DST, Government of India [SRG/2019/000330]

Ask authors/readers for more resources

This research focuses on the development of a miniaturized plasmonic immunosensor based on toroidal electrodynamics concept, which can detect the presence of SARS-CoV-2 virus protein with high sensitivity. This technology offers a valuable tool for rapid and precise screening of virus carriers.
Effective and efficient management of human betacoronavirus severe acute respiratory syndrome (SARS)-CoV-2 virus infection i.e., COVID-19 pandemic, required sensitive and selective sensors with short sample-to-result durations for performing desired diagnostics. In this direction, one appropriate alternative approach to detect SARS-CoV-2 virus protein at low level i.e., femtomolar (fM) is exploring plasmonic metasensor technology for COVID-19 diagnostics, which offers exquisite opportunities in advanced healthcare programs, and modern clinical diagnostics. The intrinsic merits of plasmonic metasensors stem from their capability to squeeze electromagnetic fields, simultaneously in frequency, time, and space. However, the detection of low-molecular weight biomolecules at low densities is a typical drawback of conventional metasensors that has recently been addressed using toroidal metasurface technology. This research is focused on the fabrication of a miniaturized plasmonic immunosensor based on toroidal electrodynamics concept that can sustain robustly confined plasmonic modes with ultranarrow lineshapes in the terahertz (THz) frequencies. By exciting toroidal dipole mode using our quasi-infinite metasurface and a judiciously optimized protocol based on functionalized gold nanoparticles (AuNPs) conjugated with the specific monoclonal antibody specific to spike protein (S1) of SARS-CoV-2 virus onto the metasurface, the resonance shifts for diverse concentrations of the spike protein are monitored. Possessing molecular weight around similar to 76 kDa allowed to detect the presence of SARS-CoV-2 virus protein with significantly low as limit of detection (LoD) was achieved as similar to 4.2 fM. We envisage that outcomes of this research will pave the way toward the use of toroidal metasensors as practical technologies for rapid and precise screening of SARS-CoV-2 virus carriers, symptomatic or asymptomatic, and spike proteins in hospitals, clinics, laboratories, and site of infection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available