4.7 Article

EF24 induces ferroptosis in osteosarcoma cells through HMOX1

Journal

BIOMEDICINE & PHARMACOTHERAPY
Volume 136, Issue -, Pages -

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.biopha.2020.111202

Keywords

EF24; HMOX1; Ferroptosis; Osteosarcoma

Funding

  1. National Natural Science Foundation of China [81071751]
  2. Guangzhou Science and Technology Project [201704030059]

Ask authors/readers for more resources

EF24 can induce ferroptosis in osteosarcoma cells by upregulating HMOX1 to suppress GPX4 expression, increasing MDA level, ROS level and intracellular ferric ion level. It may serve as a potential agent for the treatment of HMOX1-positive osteosarcoma patients.
Purpose: EF24, a synthetic analogue of curcumin, was developed as an anti-tumor compound to induce apoptosis, inhibit proliferation and metastasis in various cancers. However, whether EF24 induces ferroptosis in osteosarcoma cells or not, and its underlying mechanism remains largely elusive. Methods: After EF24 combining with or without other compounds treatments, mRNA expression profiles were proceeded by RNA sequencing. Cytotoxicity was measured by cell counting kit-8 assay. Cell death was quantified by flow cytometer. Gene expression was quantified by real-time PCR. Protein level was detected by western blot. Malonydialdehyde (MDA) level was measured by lipid pemxidation MDA assay kit. Reactive oxygen species (ROS) level was measured by ROS Assay Kit. Ferric ion was measured by Iron Assay kit. Results: EF24 significantly induced cell death in osteosarcoma cell lines, and this effect was significantly reversed by ferrostatin-1, but not Z-VAD(Ome)-FMK, MRT68921 or necrosulfonamide. EF24 significantly increased MDA level, ROS level and intracellular ferric ion level, these effects were significantly attenuated by ferrostatin-1. EF24 upregulated HMOX1 expression in a dose dependent manner, overexpression of HMOX1 facilitated EF24 to induce ferroptosis in osteosarcoma cell lines. HMOX1 knockdown attenuated EF24-induced cytotoxicity and attenuated EF24-induced inhibition of Glutathione Pemxidase 4 (GPX4) expression. Conclusion: Our results showed that EF24 upregulated HMOX1 to suppress GPX4 expression to induce ferroptosis by increasing MDA level, ROS level and intracellular ferric ion level. Thus, EF24 might serve as a potential agent for the treatment of HMOX1-positive osteosarcoma patients.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available