4.7 Article

Impact of gas turbine flexibility improvements on combined cycle gas turbine performance

Journal

APPLIED THERMAL ENGINEERING
Volume 189, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2021.116703

Keywords

Flexibility; Gas turbine; MEL; Ramp-up rate; Power augmentation

Funding

  1. European Union's Horizon 2020 research and innovation programme [764545]
  2. H2020 Societal Challenges Programme [764545] Funding Source: H2020 Societal Challenges Programme

Ask authors/readers for more resources

Improvements in gas turbine flexibility, achieved through minimum environmental load and ramp-up rates, have increased the power generation performance of CCGT. The study shows that flexibility enhancements in the gas turbine can also be applied to the overall CCGT operation, despite constraints from the bottoming cycle.
The improvement of gas turbines flexibility has been driven by more use of renewable sources of power due to environmental concerns. There are different approaches to improving gas turbine flexibility, and they have performance implications for the bottoming cycle in the combined cycle gas turbine (CCGT) operation. The CCGT configuration is favourable in generating more power output, due to the higher thermal efficiency that is key to the economic viability of electric utility companies. However, the flexibility benefits obtained in the gas turbine is often not translated to the overall CCGT operation. In this study, the flexibility improvements are the minimum environmental load (MEL) and ramp-up rates, that are facilitated by gas turbine compressor air extraction and injection, respectively. The bottoming cycle has been modelled in this study, based on the detailed cascade approach, also using the exhaust gas conditions of the topping cycle model from recent studies of gas turbine flexibility by the authors. At the design full load, the CCGT performance is verified and subsequent off-design cases from the gas turbine air extraction and injection simulations are replicated for the bottoming cycle. The MEL extension on the gas turbine that brings about a reduction in the engine power output results in a higher steam turbine power output due to higher exhaust gas temperature of the former. This curtails the extended MEL of the CCGT to 19% improvement, as opposed to 34% for the stand-alone gas turbine. For the CCGT ramp-up rate improvement with air injection, a 51% increase was attained. This is 3% points lower than the stand-alone gas turbine, arising from the lower steam turbine ramp-up rate. The study has shown that the flexibility improvements in the topping cycle also apply to the overall CCGT, despite constraints from the bottoming cycle.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available