4.7 Article

Design of battery thermal management system based on phase change material and heat pipe

Journal

APPLIED THERMAL ENGINEERING
Volume 188, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2021.116665

Keywords

Battery thermal management; HP; PCM; Thickness distribution of PCM; Optimization strategy

Funding

  1. National Natural Science Foundation of China [51976062, 51536003]
  2. Science and Technology Program of Guangzhou [201804010499]

Ask authors/readers for more resources

This paper investigates the performance of battery thermal management system with PCM and HP, finding that PCM can effectively reduce the temperature difference in the battery pack. Numerical methods show that increasing environmental convective heat transfer coefficient and PCM thickness can lower the maximum temperature in the battery pack while raising the temperature difference.
In this paper, the performance of battery thermal management system (BTMS) with phase change material (PCM) and heat pipe (HP) is studied. The performance of the BTMS is compared to that of the one with solely HP, find that PCM can effectively reduce the temperature difference in battery pack. Then, the influences of the environmental parameters, the parameters of the HP and PCM on system performance are investigated using numerical method. The results show that increasing environmental convective heat transfer coefficient (h), latent heat and thickness of PCM, or decreasing ambient temperature can reduce the maximum temperature in battery pack while increasing the temperature difference. Increasing the equivalent thermal conductivity of the started HP (k(HP-S)) and reducing the start temperature can improve the heat dissipation of battery pack. When the melting temperature of PCM is lower than the start temperature of HP, the temperature difference of battery pack is large. Furthermore, to improve the temperature uniformity in battery pack, an effective strategy for optimizing the thickness distribution of PCM is proposed without increasing the system volume and investment. The optimized results under different conditions show that adjusting the thickness distribution of PCM can effectively improve the system performance when k(HP-S) is small and h is moderate. The maximum temperature difference in battery pack is reduced by 30% after the optimization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available