4.6 Article

Influence of silver and titanium dioxide nanoparticles on in vitro blood-brain barrier permeability

Journal

ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY
Volume 47, Issue -, Pages 108-118

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.etap.2016.09.009

Keywords

Silver nanoparticles; Titanium dioxide nanoparticles; In vitro blood-brain barrier; Permeability; Silver ions

Funding

  1. Ministry of Science and Technology (MOST), Taiwan [103-2221-E-007-006-MY3]

Ask authors/readers for more resources

An in vitro blood-brain barrier (BBB) model being composed of co-culture with endothelial (bEnd.3) and astrocyte-like (ALT) cells was established to evaluate the toxicity and permeability of Ag nanoparticles (AgNPs; 8 nm) and TiO2 nanoparticles (TiO(2)NPs; 6 nm and 35 nm) in normal and inflammatory central nervous system. Lipopolysaccharide (LPS) was pre-treated to simulate the inflammatory responses. Both AgNPs and Ag ions can decrease transendothelial electrical resistance (TEER) value, and cause discontinuous tight junction proteins (claudin-5 and zonula occludens-1) of BBB. However, only the Ag ions induced inflammatory cytokines to release, and had less cell-to-cell permeability than AgNPs, which indicated that the toxicity of AgNPs was distinct from Ag ions. LPS itself disrupted BBB, while co-treatment with AgNPs and LPS dramatically enhanced the disruption and permeability coefficient. On the other hand, TiO2NPs exposure increased BBB penetration by size, and disrupted tight junction proteins without size dependence, and many of TiO2NPs accumulated in the endothelial cells were observed. This study provided the new insight of toxic potency of AgNPs and TiO(2)NPs in BBB. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available