4.8 Article

Boosting the electrocatalytic HER performance of Ni3N-V2O3 via the interface coupling effect

Journal

APPLIED CATALYSIS B-ENVIRONMENTAL
Volume 283, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.apcatb.2020.119590

Keywords

Confinement effect; Electrocatalytic hydrogen evolution; Interface coupling effect; Ni3N-V2O3

Funding

  1. National Natural Science Foundation of China [21573135, U1832145, 51321091, 11374190, 51602179]
  2. Young Scholars Program of Shandong University [2020QNQT012, 2016WLJH16]
  3. Taishan Scholar Foundation of Shandong Province, China

Ask authors/readers for more resources

The construction of a suitable coupling interface is essential for improving the performance of high-efficient electrocatalysts. In this study, a Ni3N-V2O3 composite was designed and synthesized, showing excellent electrocatalytic hydrogen evolution reaction (HER) performance. The introduction of V2O3 led to a confinement effect and interface coupling effect, which greatly increased catalytic sites and improved performance.
Constructing a suitable coupling interface to improve the performance is of great significance for the development of high-efficient electrocatalysts. Here, we design and synthesize a Ni3N-V2O3 composite via nitriding treatment of NiV-LDH precursor, which exhibits excellent electrocatalytic hydrogen evolution reaction (HER) performance including low potential, fast kinetic rate and high stability. Combined with various characterizations and theoretical calculations, the performance promotion mechanism of Ni3N-V2O3 is analyzed in depth. It is proved that the confinement effect and interface coupling effect caused by the introduction of V2O3 can greatly increase the catalytic sites, regulate the charge distribution at the interface, optimize the occupancy of the N 2p orbital, and ultimately improve the electrocatalytic HER performance of Ni3N. This work provides a new idea and guidance for the design and preparation of high-efficient catalysts in the future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available