4.8 Article

Construction of hierarchical ZnIn2S4@PCN-224 heterojunction for boosting photocatalytic performance in hydrogen production and degradation of tetracycline hydrochloride

Journal

APPLIED CATALYSIS B-ENVIRONMENTAL
Volume 284, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.apcatb.2020.119762

Keywords

Metal organic framework; Photocatalysts; Hydrogen production; Degradation; ZnIn2S4

Funding

  1. National Natural Science Foundation of China [21663027, 21808189, 21962018]
  2. Natural Science Basic Research Fund of Shaanxi Province [2020JZ20]
  3. Fundamental Research Funds for the Central Universities of Chang'an University [300102299304]
  4. Key Research and Development Program of Gansu Province [20YF3GA021,20JR5RA523]
  5. Innovation and Promotion Project of College and University [2020B-091]

Ask authors/readers for more resources

The study demonstrates the synthesis of a hierarchical structured ZnIn2S4@PCN-224 composite, which shows enhanced photocatalytic activity and stable performance under visible-light irradiation. The establishment of a Z-scheme junction between ZnIn2S4 and PCN-224 contributes to the significant improvement in photocatalysis.
As a typical member of sulfide family, ZnIn2S4 bears impressive activity in photocatalysis. Nonetheless, egregious recombination of photo-excited electron and hole pairs confines its practical usage. In this study, PCN-224, a metal organic framework (MOF) composed of porphyrin linkers and Zr clusters, is employed to establish a novel hierarchical structured ZnIn2S4@PCN-224 via a solvothermal method. These as-prepared composites are further evaluated by visible-light-driven photocatalysis and able to present steady performance. The optimized ZnIn2S4@PCN-224 has a hydrogen production rate of 0.284 mmol h-1 in absence of Pt, higher than many contrastive ZnIn2S4-based photocatalysts even in assistance of Pt cocatalyst. Besides, it is able to dominate the degradation of tetracycline hydrochloride (TCH), giving 99.9 % pollutant removal within 60 min, about 4.7 times higher than that catalyzed by ZnIn2S4. It is supposed that the great improvement in photocatalysis is ascribable to the establishment of Z-scheme junction between ZnIn2S4 and PCN-224.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available