4.8 Article

Nitrogen doping-mediated oxygen vacancies enhancing co-catalyst-free solar photocatalytic H2 production activity in anatase TiO2 nanosheet assembly

Journal

APPLIED CATALYSIS B-ENVIRONMENTAL
Volume 285, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.apcatb.2020.119755

Keywords

Nitrogen doping; Oxygen vacancy; Defective TiO2; Photocatalyst; Hydrogen evolution

Ask authors/readers for more resources

Introducing oxygen vacancies (Vo) into TiO2 photocatalyst along with N doping is proposed as an alternative strategy for achieving efficient co-catalyst-free solar photocatalytic activity under less extreme conditions. The synthesized material exhibits good co-catalyst-free solar photocatalytic activity for hydrogen evolution via water splitting under irradiation with simulated solar light, showing higher efficiency compared to typical co-catalyst-free defective TiO2 materials. The introduced Vo is believed to play a role in facilitating charge separation and improving photocatalytic efficiency.
Introducing oxygen vacancies (Vo) into TiO2 photocatalyst has been considered an effective strategy for improving co-catalyst-free solar photocatalytic activity. However, the methods used to synthesize it require high pressure/temperature and/or hazardous/costly reagents. Here we propose Vo introduction, concomitant with N doping in TiO2, as an alternative strategy for achieving efficient co-catalyst-free solar photocatalytic activity under less extreme conditions. After calcination at 450 degrees C of mesoporous spherical assemblies of a layered titanate nanosheet containing N,N-dimethylformamide as its synthesis solvent in the structure, we successfully synthesized mesoporous spherical assemblies of nanosheets composed of anatase TiO2 nanoparticles with Vo mediated by N doping. This material exhibits good co-catalyst-free solar photocatalytic activity for hydrogen evolution via water splitting under irradiation with simulated solar light, which is considerably higher than that of typical co-catalyst-free defective TiO2 materials. We discuss the possible role of the introduced Vo in facilitating charge separation and raising photocatalytic efficiency.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available