4.4 Review

In Silico Approach for Phytocompound-Based Drug Designing to Fight Efflux Pump-Mediated Multidrug-Resistant Mycobacterium tuberculosis

Journal

APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY
Volume 193, Issue 6, Pages 1757-1779

Publisher

SPRINGER
DOI: 10.1007/s12010-021-03557-1

Keywords

Multidrug-resistant tuberculosis; Efflux pumps; Efflux pump inhibitors; Phytocompounds

Ask authors/readers for more resources

Tuberculosis, caused by Mycobacterium tuberculosis, remains a major cause of death worldwide due to drug resistance mechanisms present in the bacterium, particularly efflux pumps. Plant compounds can serve as resources for developing efflux pump inhibitors, potentially improving existing antibiotics and leading to the discovery of new drugs. Computational tools can be used for efficient screening of phytochemicals as inhibitors for efflux pumps, offering a promising strategy for combatting drug resistance in tuberculosis.
Tuberculosis (TB), caused by the bacteria Mycobacterium tuberculosis, is one of the principal causes of death in the world despite the existence of a significant number of antibiotics aimed against it. This is mainly due to the drug resistance mechanisms present in the bacterium, which leads to multidrug-resistant tuberculosis (MDR-TB). Additionally, the development of new antibiotics has become limited over the years. Although there are various drug resistance mechanisms present, efflux pumps are of utmost importance because they extrude out several dissimilar antitubercular drugs out of the cell. There are many efflux pump proteins present in Mycobacterium tuberculosis. Therefore, blocking these efflux pumps by inhibitors can raise the efficacy of the existing antibiotics and may also pave the path for the discovery and synthesis of new drugs. Plant compounds can act as a resource for the development of efflux pump inhibitors (EPIs), which may eventually replace or augment the current therapeutic options. This is mainly because plants have been traditionally used for ages for food or treatment and are considered safe with little or no side effects. Various computational tools are available which are used for the virtual screening of a large number of phytocompounds within a short span of time. This review aims to highlight the mechanism and appearance of drug resistance in Mycobacterium tuberculosis with emphasis on efflux pumps along with the significance of phytochemicals as inhibitors of these pumps and their screening strategy by computational approaches.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available