4.5 Article

Global transcriptomic profiling in barramundi (Lates calcarifer) from rivers impacted by differing agricultural land uses

Journal

ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY
Volume 36, Issue 1, Pages 103-112

Publisher

WILEY
DOI: 10.1002/etc.3505

Keywords

Pesticides; Diuron; Imidacloprid; RNA-sequence; Gene expression

Funding

  1. CSIRO's Water for a Healthy Country Flagship Program
  2. CSIRO Oceans and Atmosphere

Ask authors/readers for more resources

Most catchments discharging into the Great Barrier Reef lagoon have elevated loads of suspended sediment, nutrients, and pesticides, including photosystem II inhibiting herbicides, associated with upstream agricultural land use. To investigate potential impacts of declining water quality on fish physiology, RNA sequencing (RNASeq) was used to characterize and compare the hepatic transcriptomes of barramundi (Lates calcarifer) captured from 2 of these tropical river catchments in Queensland, Australia. The Daintree and Tully Rivers differ in upstream land uses, as well as sediment, nutrient, and pesticide loads, with the area of agricultural land use and contaminant loads lower in the Daintree. In fish collected from the Tully River, transcripts involved in fatty acid metabolism, amino acid metabolism, and citrate cycling were also more abundant, suggesting elevated circulating cortisol concentrations, whereas transcripts involved in immune responses were less abundant. Fish from the Tully also had an increased abundance of transcripts associated with xenobiotic metabolism. Previous laboratory-based studies observed similar patterns in fish and amphibians exposed to the agricultural herbicide atrazine. If these transcriptomic patterns are manifested at the whole organism level, the differences in water quality between the 2 rivers may alter fish growth and fitness. Environ Toxicol Chem 2017;36:103-112. (c) 2016 SETAC

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available