4.7 Article

Long-lasting pro-inflammatory suppression of microglia by LPS-preconditioning is mediated by RelB-dependent epigenetic silencing

Journal

BRAIN BEHAVIOR AND IMMUNITY
Volume 48, Issue -, Pages 205-221

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbi.2015.03.013

Keywords

Microglia; Innate immunity; Endotoxin tolerance; Epigenetic silencing

Funding

  1. China Scholarship Council fellowship
  2. Graduate School Behavioral and Cognitive Neurosciences
  3. German Research Council (DFG) [SFB/TRR43, FOR1336]
  4. NeuroCure

Ask authors/readers for more resources

Microglia, the innate immune cells of the central nervous system (CNS), react to endotoxins like bacterial lipopolysaccharides (LPS) with a pronounced inflammatory response. To avoid excess damage to the CNS, the microglia inflammatory response needs to be tightly regulated. Here we report that a single LPS challenge results in a prolonged blunted pro-inflammatory response to a subsequent LPS stimulation, both in primary microglia cultures (100 ng/ml) and in vivo after intraperitoneal (0.25 and 1 mg/kg) or intracere-broventricular (5 mu g) LPS administration. Chromatin immunoprecipitation (ChIP) experiments with primary microglia and microglia acutely isolated from mice showed that LPS preconditioning was accompanied by a reduction in active histone modifications AcH3 and H3K4me3 in the promoters of the IL-10 and TNF-alpha genes. Furthermore, LPS preconditioning resulted in an increase in the amount of repressive histone modification H3K9me2 in the IL-1 beta promoter. ChIP and knock-down experiments showed that NF-kappa B subunit RelB was bound to the IL-1 beta promoter in preconditioned microglia and that RelB is required for the attenuated LPS response. In addition to a suppressed pro-inflammatory response, preconditioned primary microglia displayed enhanced phagocytic activity, increased outward potassium currents and nitric oxide production in response to a second LPS challenge. In vivo, a single i.p. LPS injection resulted in reduced performance in a spatial learning task 4 weeks later, indicating that a single inflammatory episode affected memory formation in these mice. Summarizing, we show that LPS-preconditioned microglia acquire an epigenetically regulated, immune-suppressed phenotype, possibly to prevent excessive damage to the central nervous system in case of recurrent (peripheral) inflammation. (C) 2015 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available