4.8 Article

Noninvasive Detection of Ammonia in the Breath of Hemodialysis Patients Using a Highly Sensitive Ammonia Sensor Based on a Polypyrrole/Sulfonated Graphene Nanocomposite

Journal

ANALYTICAL CHEMISTRY
Volume 93, Issue 17, Pages 6706-6714

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.1c00171

Keywords

-

Funding

  1. Tarbiat Modares University Research Council
  2. Iran National Science Foundation (INSF)

Ask authors/readers for more resources

In this study, chemiresistive sensors based on nanocomposites of polypyrrole and various graphitic materials were fabricated and characterized for ammonia detection. The PPy/SRGO sensor exhibited excellent performance at 28 degrees Celsius, demonstrating potential for noninvasive detection of ammonia concentration in breath and diagnosis of renal and liver diseases, as confirmed through correlation with blood urea nitrogen levels in hemodialysis patients. This research showcases the promising capabilities of the PPy/SRGO sensor in selective and sensitive detection of low-concentration ammonia.
In this work, we fabricated fast-responsive and highly sensitive chemiresistive sensors based on nanocomposites of polypyrrole and graphitic materials such as graphene oxide (GO), reduced graphene oxide (RGO), and sulfonated graphene (SRGO) by an in situ chemical oxidative polymerization method. The synthesized nanocomposites were characterized using field emission scanning electron microscopy (FESEM), energy-dispersive spectroscopy (EDS), Fourier transform infrared (FT-IR) spectroscopy, and X-ray diffraction (XRD). The effects of the operating temperature of different nanocomposites were investigated at four temperatures (28, 40, 50, and 60 degrees C), and the results were compared with that of the polypyrrole-based sensor. The experimental results for sensors indicate that the proposed PPy/SRGO sensor could be an appropriate choice for NH3 detection at 28 degrees C in the range of 0.50 parts per billion (ppb) to 12 parts per million (ppm). The PPy/SRGO nanocomposite gas sensor exhibited fast responsivity, good repeatability, and high chemical selectivity to low-concentration ammonia against humidity, methanol, ethanol, acetone, formaldehyde, dibutylamine, dimethylamine, methylamine, carbon monoxide, and nitrogen oxide at 28 degrees C. We utilized the PPy/SRGO sensor for studying the variation of the ammonia concentration in hemodialysis (HD) patients' breath before and after dialysis and correlated it with the blood urea nitrogen (BUN) levels. The results of the PPy/SRGO sensor indicated that the breath ammonia concentration significantly decreased after dialysis in agreement with BUN. The results demonstrate the potential application of the PPy/SRGO sensor for noninvasive detection of ammonia in breath and make this type of sensor a promising tool for the diagnosis of renal and liver diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available