4.8 Article

Small-Scale Magnetic Actuators with Optimal Six Degrees-of-Freedom

Journal

ADVANCED MATERIALS
Volume 33, Issue 23, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202100170

Keywords

actuators; locomotion; magnetic materials; miniature robots; small‐ scale assembly; soft robots

Funding

  1. Nanyang Technological University

Ask authors/readers for more resources

Magnetic miniature robots have the potential to revolutionize applications in robotics, materials science, and biomedicine. New fabrication and actuation methods have been proposed to overcome existing limitations, allowing for improved performance and functionalities in these tiny robots.
Magnetic miniature robots (MMRs) are small-scale, untethered actuators which can be controlled by magnetic fields. As these actuators can non-invasively access highly confined and enclosed spaces; they have great potential to revolutionize numerous applications in robotics, materials science, and biomedicine. While the creation of MMRs with six-degrees-of-freedom (six-DOF) represents a major advancement for this class of actuators, these robots are not widely adopted due to two critical limitations: i) under precise orientation control, these MMRs have slow sixth-DOF angular velocities (4 degree s(-1)) and it is difficult to apply desired magnetic forces on them; ii) such MMRs cannot perform soft-bodied functionalities. Here a fabrication method that can magnetize optimal MMRs to produce 51-297-fold larger sixth-DOF torque than existing small-scale, magnetic actuators is introduced. A universal actuation method that is applicable for rigid and soft MMRs with six-DOF is also proposed. Under precise orientation control, the optimal MMRs can execute full six-DOF motions reliably and achieve sixth-DOF angular velocities of 173 degree s(-1). The soft MMRs can display unprecedented functionalities; the six-DOF jellyfish-like robot can swim across barriers impassable by existing similar devices and the six-DOF gripper is 20-folds quicker than its five-DOF predecessor in completing a complicated, small-scale assembly.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available