4.8 Article

Interfacially Super-Assembled Asymmetric and H2O2 Sensitive Multilayer-Sandwich Magnetic Mesoporous Silica Nanomotors for Detecting and Removing Heavy Metal Ions

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 31, Issue 21, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202010694

Keywords

asymmetric; heavy metal ions; magnetic; mesoporous; nanomotors; silica nanobottles; super‐ assembly

Funding

  1. National Key Research and Development Program of China [2019YFC1604601, 2019YFC1604600, 2017YFA0206901, 2017YFA0206900, 2018YFC1602301]
  2. National Natural Science Foundation of China [21705027, 21974029]
  3. Natural Science Foundation of Shanghai [18ZR1404700]
  4. Construction project of Shanghai Key Laboratory of Molecular Imaging [18DZ2260400]
  5. Shanghai Municipal Education Commission (Class II Plateau Disciplinary Construction Program of Medical Technology of SUMHS, 2018-2020)

Ask authors/readers for more resources

Asymmetric multilayer-sandwich magnetic mesoporous silica nanobottles were prepared through an interfacial super-assembly strategy, exhibiting high magnetization, surface area, and large pore size for applications in enzyme-powered nanomotors and heavy metal ion removal.
Asymmetric hollow and magnetic mesoporous silica nanocomposites have great potential applications due to their unique structural-functional properties. Here, asymmetric multilayer-sandwich magnetic mesoporous silica nanobottles (MMSNBs) are presented through an interfacial super-assembly strategy. Asymmetric hollow silica nanobottles (SNBs) are first prepared, and Fe3O4 nanoparticles monolayers and mesoporous silica layers are uniformly super-assembled on the surfaces of SNBs, respectively. The high Fe3O4 nanoparticles loading endows MMSNBs with a high magnetization (8.5 emu g(-1)), while the mesoporous silica layers exhibit high surface area (613.4 m(2) g(-1)) and large pore size (3.6 nm). MMSNBs can be employed as a novel type of enzyme-powered nanomotors by integrating catalase (Cat-MMSNBs), which show an average speed of 7.59 mu m s(-1) (approximate to 25 body lengths s(-1)) at 1.5 wt% H2O2. Accordingly, the water quality can be monitored by evaluating the movement speed of Cat-MMSNBs. Moreover, MMSNBs act as a good adsorbent for removing more than 90% of the heavy metal ions with the advantage of the mesoporous structure. In addition, the good magnetic response enables the MMSNBs with precise directional control and is conducive to recycling for repeated operation. This bottom-up interfacial super-assembly construction strategy allows for a new understanding of the rational design and synthesis of multi-functional nanomotors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available