4.6 Article

Manufactured Flexible Electrodes for Dopamine Detection: Integration of Conducting Polymer in 3D-Printed Polylactic Acid

Journal

ADVANCED ENGINEERING MATERIALS
Volume 23, Issue 6, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adem.202100002

Keywords

additive manufacturing; conducting polymer; electrochemical biosensor; flexible electrode; polylactic aci

Funding

  1. MINECO/FEDER [RTI2018-098951-B-I00]
  2. Agencia de Gestio d'Ajuts Universitaris i de Recerca [2017SGR359]
  3. FPI grant [PRE2019-089489]

Ask authors/readers for more resources

Flexible electrochemical sensors based on electroactive materials have been developed as powerful tools for detecting bioanalytes in biomedical applications. 3D printing technology enables the fabrication of electrochemical devices with no design constraints, waste minimization and high reproducibility. The presented approach for preparing electrochemical dopamine biosensors demonstrates the feasibility of rapid and cost-effective production of sensors without the need for conductive filaments.
Flexible electrochemical sensors based on electroactive materials have emerged as powerful analytical tools for biomedical applications requiring bioanalytes detection. Within this context, 3D printing is a remarkable technology for developing electrochemical devices, due to no design constraints, waste minimization, and batch manufacturing with high reproducibility. However, the fabrication of 3D printed electrodes is still limited by the in-house fabrication of conductive filaments, which requires the mixture of the electroactive material with melted of thermoplastic polymer (e.g., polylactic acid, PLA). Herein, a simple approach is presented for preparing electrochemical dopamine (DA) biosensors. Specifically, the surface of 3D-printed PLA specimens, which exhibit an elastic modulus and a tensile strength of 3.7 +/- 0.3 GPa and 47 +/- 1 MPa, respectively, is activated applying a 0.5 m NaOH solution for 30 min and, subsequently, poly(3,4-ethylenedioxythiophene) is polymerized in situ using aqueous solvent. The detection of DA with the produced sensors has been demonstrated by cyclic voltammetry, differential pulse voltammetry, and chronoamperometry. In summary, the obtained results reflect that low-cost electrochemical sensors, which are widely used in medicine and biotechnology, can be rapidly fabricated using the proposed approach that, although based on additive manufacturing, does not require the preparation of conductive filaments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available