4.6 Article

Inhibition of the ERK1/2 Phosphorylation by Dextromethorphan Protects against Core Autistic Symptoms in VPA Induced Autistic Rats: In Silico and in Vivo Drug Repurposition Study

Journal

ACS CHEMICAL NEUROSCIENCE
Volume 12, Issue 10, Pages 1749-1767

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acschemneuro.0c00672

Keywords

Autism spectrum disorder; valproic acid; glutamate; excitatory/inhibitory; GluN2B; sociability

Ask authors/readers for more resources

The research demonstrates that dextromethorphan can regulate the imbalance between excitatory and inhibitory neurotransmitters, effectively improving ASD-like symptoms, including behavioral patterns and oxidative stress levels.
The imbalance between excitatory and inhibitory neurotransmitters is explicitly related to the pathophysiology of autism spectrum disorder (ASD). The role of an NMDA receptor antagonist, dextromethorphan, was studied in ameliorating the ASD-like symptoms by regulating the excitatory and inhibitory imbalance using the valproic acid (VPA) model of ASD. Female Wistar rats were administered VPA [600 mg/kg on embryonic day ED-12.5] through intraperitoneal (ip) injection to induce ASD in pups. Autistic pups were then given dextromethorphan (10, 15, and 30 mg/kg; ip) and risperidone (2.5 mg/kg; ip) from PND 23 to 43 in different groups. Behavioral tests (three chamber sociability, self-grooming, Morris water maze, elevated plus maze, open field, rotarod, grip strength), oxidative stress and inflammatory markers, histological evaluation (H&E, Nissil staining), and NMDA and ERK1/2 expression by immunohistochemistry and RT-PCR were done. The in silico modeling of dextromethorphan against PPDA, TCN-201, MK-22, EVT-101 on NMDA receptors was also performed. Dextromethorphan (30 mg/kg) rescued the impaired behavioral patterns including social excitability, hyperactivity, repetitive and restricted behaviors as well as mitigation of the memory and motor coordination. The levels of various oxidative stress markers (GSH, SOD, catalase, MDA) and inflammatory markers (IL-1 beta, IL-6, IL-10, TNF-alpha) were ameliorated by different doses of dextromethorphan. It also reduced the neuronal injury score and rescued the overly expressed pERK1/2 and NMDA signaling in both the prefrontal cortex and hippocampus of the autistic pups. In silico results showed favorable binding of dextromethorphan against TCN-201 and MK-22 binding sites. The present study provided experimental evidence for the potential therapeutic role of dextromethorphan in attenuating autism symptomatology in the ASD model of rats. Thus, modulation of the glutamatergic signaling can be a potential target for ASD treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available