4.8 Review

Recent Advances in Multimetal and Doped Transition-Metal Phosphides for the Hydrogen Evolution Reaction at Different pH values

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 13, Issue 19, Pages 22077-22097

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.1c02129

Keywords

transition-metal phosphides; hydrogen evolution reaction; doping; bimetallic; heterostructures

Funding

  1. Yousef Jameel Scholarship Fund

Ask authors/readers for more resources

The review summarizes recent progress in developing transition-metal phosphide (TMP) HER electrocatalysts, focusing on strategies to tune the activity in acidic, neutral, and basic media. These strategies include doping TMPs with metal and nonmetal elements, fabricating multimetallic phosphide phases, and constructing multicomponent heterostructures comprising TMPs and another component. The challenges and future research directions are also discussed.
Hydrogen is a fuel with a potentially zero-carbon footprint viewed as a viable alternative to fossil fuels. It can be produced in a large scale via electrochemical water splitting using electricity derived from renewable sources, but this would require highly active, inexpensive, and stable hydrogen evolution reaction (HER) catalysts to replace the Pt benchmark. Transition-metal phosphides (TMPs) are potential Pt replacements owing to their generally high activity as well as versatility as HER catalysts for different pH media. This review summarizes the recent progress in the development of TMP HER electrocatalysts, focusing on the strategies that have been recently explored to tune the activity in acidic, neutral, and basic media. These strategies are the doping of TMPs with metal and nonmetal elements, fabrication of multimetallic phosphide phases, and construction of multicomponent heterostructures comprising TMPs and another component such as a different TMP or a metal oxide/hydroxide. The synthetic methods utilized to design the catalysts are also presented. Finally, the challenges still remaining and future research directions are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available