4.8 Article

Zinc-Doped High-Nickel, Low-Cobalt Layered Oxide Cathodes for High-Energy-Density Lithium-Ion Batteries

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 13, Issue 13, Pages 15324-15332

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.1c01824

Keywords

lithium-ion batteries; high-nickel layered oxides; zinc doping; phase transitions; electrode-electrolyte interphases

Funding

  1. Office of Vehicle Technologies of the U.S. Department of Energy through the Advanced Battery Materials Research (BMR) Program (Battery500 Consortium) award [DE-EE0007762]

Ask authors/readers for more resources

In high-Ni layered oxides for Li-ion batteries, incorporating a small amount of Zn can enhance cell performance, reduce capacity loss, and improve voltage retention. Zn doping facilitates a smoother phase transition, suppresses lattice distortion, and maintains the mechanical integrity of cathode particles, leading to enhanced interphase stability and improved cycling performance.
High-Ni layered oxides with Ni contents greater than 90% are promising cathode candidates for whigh-energy-density Li-ion batteries. However, drastic electrode-electrolyte reactions and mechanical degradation issues limit their cycle life and practical viability. We demonstrate here that LiNi0.94Co0.04Zn0.02O1.99 (NCZ), obtained by incorporating 2 mol % Zn2+ into an ultrahigh-Ni baseline cathode material LiNi0.94Co0.06O2 (NC), delivers superior cell performance. NCZ retains 74% of the initial capacity after 500 cycles in a full cell assembled with a graphite anode, outperforming NC (62% retention). NCZ also possesses a higher average discharge voltage relative to NC with an outstanding average voltage retention of over 99% after 130 cycles in half cells. Bulk structural investigations unveil that Zn doping promotes a smoother phase transition, suppresses anisotropic lattice distortion, and maintains the mechanical integrity of cathode particles. Furthermore, NCZ shows an enhanced interphase stability after long-term cycling, in contrast to the seriously degraded surface chemistry in NC. This work provides a practically viable approach for designing higher-energy-density high-Ni layered oxide cathodes for lithium-ion batteries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available