4.8 Article

Investigation of Electrolyte-Dependent Carbonate Formation on Gas Diffusion Electrodes for CO2 Electrolysis

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 13, Issue 13, Pages 15132-15142

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.0c21997

Keywords

CO2 electroreduction; durability; flow cell; carbonate formation; degradation mechanisms

Funding

  1. Shell's New Energies Research and Technology (NERT) program
  2. Japanese Ministry for Education, Culture, Sports, Science and Technology
  3. SURGE Fellowship

Ask authors/readers for more resources

This study investigates the degradation of gas diffusion electrodes (GDEs) in a flowing, alkaline CO2 electrolyzer via the formation of carbonate deposits on the GDE surface. The rate of carbonate deposit formation was found to increase with increasing electrolyte molarity and become more prevalent in K+-containing electrolytes. The formation of carbonate deposits was found to diminish electrode performance in ECO2R and reduce GDE hydrophobicity, leading to increased flooding and internal deposits within the GDE substrate.
The electrochemical reduction of CO2 (ECO2R) is a promising method for reducing CO2 emissions and producing carbon-neutral fuels if long-term durability of electrodes can be achieved by identifying and addressing electrode degradation mechanisms. This work investigates the degradation of gas diffusion electrodes (GDEs) in a flowing, alkaline CO2 electrolyzer via the formation of carbonate deposits on the GDE surface. These carbonate deposits were found to impede electrode performance after only 6 h of operation at current densities ranging from -50 to -200 mA cm(-2). The rate of carbonate deposit formation on the GDE surface was determined to increase with increasing electrolyte molarity and became more prevalent in K+-containing as opposed to Cs+-containing electrolytes. Electrolyte composition and concentration also had significant effects on the morphology, distribution, and surface coverage of the carbonate deposits. For example, carbonates formed in K+-containing electrolytes formed concentrated deposit regions of varying morphology on the GDE surface, while those formed in Cs+-containing electrolytes appeared as small crystals, well dispersed across the electrode surface. Both deposits occluding the catalyst layer surface and those found within the microporous layer and carbon fiber substrate of the electrode were found to diminish performance in ECO2R, leading to rapid loss of CO production after similar to 50% of the catalyst layer surface was occluded. Additionally, carbonate deposits reduced GDE hydrophobicity, leading to increased flooding and internal deposits within the GDE substrate. Electrolyte engineering-based solutions are suggested for improved GDE durability in future work.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available