4.6 Article

An Automated Method for Mapping Giant Kelp Canopy Dynamics from UAV

Journal

FRONTIERS IN ENVIRONMENTAL SCIENCE
Volume 8, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fenvs.2020.587354

Keywords

drones; kelp classification; kelp mapping; spatial variability; tidal height; current speed; ecological succession

Funding

  1. U.S. Department of Energy ARPAE [DE-AR0000922]
  2. U.S. National Science Foundation [OCE 1831937]
  3. Nature Conservancy [02042019-5719]

Ask authors/readers for more resources

Satellite and aerial imagery have been extensively used for mapping the distribution of giant kelp in southern California, and now there is potential for using UAVs to map kelp canopy at high resolutions. Tidal height and current speed were found to impact the amount of floating kelp canopy, with UAVs proving to be valuable tools for mapping these changes. The accuracy of the UAV imagery was 93% across various conditions, providing insight into the variability of kelp abundance.
Satellite and aerial imagery have been used extensively for mapping the abundance and distribution of giant kelp (Macrocystis pyrifera) in southern California. There is now great potential for using unoccupied aerial vehicles (UAVs) to map kelp canopy at very high resolutions. However, tides and currents have been shown to affect the amount of floating kelp canopy on the water surface, and the impacts of these processes on remotely sensed kelp estimates in this region have not been fully quantified. UAVs were used to map fine-scale changes in canopy area due to tidal height and current speed at kelp forests off the coast of Palos Verdes, CA and Santa Barbara, CA. An automated method for detecting kelp canopy was developed that was 67% accurate using red-green-blue (RGB) UAV imagery and 93% accurate using multispectral UAV imagery across a range of weather, ocean, and illumination conditions. Increases in tidal height of 1 m reduced the amount of floating kelp canopy by 15% in Santa Barbara and by over 30% in Palos Verdes. The effect of current speed on visible kelp canopy was inconclusive, but there was a trend towards lower canopy area with increased current speed. Therefore, while tidal height and current speed can introduce significant variability to estimates of kelp abundance, the magnitude of this variability is site specific. Still, UAVs are a valuable tool for mapping of kelp canopy and can provide greater spatial resolution and temporal coverage than is possible from many satellite sensors. This data can provide insight into the patterns and drivers of high frequency fluctuations in kelp abundance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available