4.6 Article

Continuous Demixing Transition of Binary Liquids: Finite-Size Scaling from the Analysis of Sub-Systems

Journal

ADVANCED THEORY AND SIMULATIONS
Volume 4, Issue 4, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adts.202000235

Keywords

binary fluids; critical phenomena; finite-size scaling; molecular dynamics simulations; phase diagrams

Funding

  1. Deutsche Forschungsgemeinschaft (DFG) [235221301, SFB 1114]
  2. BRNS [37(3)/14/10/2018-BRNS/370132]
  3. DST Women Scientist Scheme [SR/WOS-A/PM-36/2017(G)]

Ask authors/readers for more resources

This study compares different paths to the critical temperature when approaching the critical composition in a symmetric binary liquid, utilizing finite-size scaling analysis and simulations. It is found that for open systems and sub-volumes with boundary interference, the use of a two-parameter finite-size scaling method can address the difficulties present.
A binary liquid near its consolute point exhibits critical fluctuations of local composition and a diverging correlation length. The method of choice to calculate critical points in the phase diagram is a finite-size scaling analysis, based on a sequence of simulations with widely different system sizes. Modern, massively parallel hardware facilitates that instead cubic sub-systems of one large simulation are used. Here, this alternative is applied to a symmetric binary liquid at critical composition and different routes to the critical temperature are compared: 1) fitting critical divergences of the composition structure factor, 2) scaling of fluctuations in sub-volumes, and 3) applying the cumulant intersection criterion to sub-systems. For the last route, two difficulties arise: sub-volumes are open systems, for which no precise estimate of the critical Binder cumulant Uc is available. Second, the boundaries of the simulation box interfere with the sub-volumes, which is resolved here by a two-parameter finite-size scaling. The implied modification to the data analysis restores the common intersection point, yielding Uc=0.201 +/- 0.001, universal for cubic Ising-like systems with free boundaries. Confluent corrections to scaling, which arise for small sub-system sizes, are quantified and the data are compatible with the universal correction exponent omega approximate to 0.83.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available