4.8 Article

Critical role of additive-induced molecular interaction on the operational stability of perovskite light-emitting diodes

Journal

JOULE
Volume 5, Issue 3, Pages 618-630

Publisher

CELL PRESS
DOI: 10.1016/j.joule.2021.01.003

Keywords

-

Funding

  1. ERC Starting grant [717026]
  2. Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University (Faculty Grant SFO-Mat-LiU) [2009-00971]
  3. China Scholarship Council (CSC)
  4. European Research Council (ERC) [717026] Funding Source: European Research Council (ERC)

Ask authors/readers for more resources

This study demonstrates greatly improved operational stability of high-efficiency PeLEDs by incorporating dicarboxylic acids into the precursor for perovskite depositions. The stable amides formed through an in situ amidation process prevent detrimental reactions between the perovskites and the charge injection layer, ensuring excellent operational stability. By optimizing the amidation reaction in the perovskite emissive layers, efficient PeLEDs with a peak external quantum efficiency of 18.6% and a long half-life time of 682 h at 20 mA cm(-2) have been achieved, representing a significant breakthrough in PeLEDs.
Despite rapid improvements in efficiency and brightness of perovskite light-emitting diodes (PeLEDs), the poor operational stability remains a critical challenge hindering their practical applications. Here, we demonstrate greatly improved operational stability of high-efficiency PeLEDs, enabled by incorporating dicarboxylic acids into the precursor for perovskite depositions. We reveal that the dicarboxylic acids efficiently eliminate reactive organic ingredients in perovskite emissive layers through an in situ amidation process, which is catalyzed by the alkaline zinc oxide substrate. The formed stable amides prohibit detrimental reactions between the perovskites and the charge injection layer underneath, stabilizing the perovskites and the interfacial contacts and ensuring the excellent operational stability of the resulting PeLEDs. Through rationally optimizing the amidation reaction in the perovskite emissive layers, we achieve efficient PeLEDs with a peak external quantum efficiency of 18.6% and a long half-life time of 682 h at 20 mA cm(-2), presenting an important breakthrough in PeLEDs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available