4.6 Article

Enhanced sulfur utilization in lithium-sulfur batteries by hybrid modified separators

Journal

MATERIALS TODAY COMMUNICATIONS
Volume 26, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.mtcomm.2021.102133

Keywords

Li-S battery; Polysulfide; Carbon nanotube; Layered double hydroxide; Chemical bonding

Funding

  1. China Scholarship Council

Ask authors/readers for more resources

The MFLC hybrid material effectively addresses the low sulfur utilization issue, significantly improving the performance of Li-S batteries and offering a new solution for their practical application.
The extraordinary energy density and low cost enable lithium-sulfur (Li-S) batteries to be a promising alternative to traditional energy storage systems. The principal hurdle facing Li-S batteries is the unsatisfactory utilization of sulfur cathodes. The detrimental shuttle issue of polysulfides and the sluggish charge transfer kinetics result in quick capacity degradation of Li-S batteries. An MFLC hybrid material composed of manganese-iron layered double hydroxides (Mn-Fe LDH) and carbon nanotubes (CNT) has been developed. Such heterostructure combines the advantages of effective chemical bonding of Mn-Fe LDH towards polysulfides with the high conductivity of CNT. When modified on a polypropylene (PP) separator, the hybrid material is proven to significantly inhibit the shuttle issue of polysulfides and accelerate their redox reaction kinetics. Li-S batteries with MFLC-modified separators revealed considerably improved electrochemical performance. A high initial capacity of 1138 mA h g(-1) and 70 % capacity retention after 200 cycles were achieved at 0.2 C. The enhanced sulfur utilization can be directly evaluated from the discharge voltage plateaus. The results indicate a new solution for the practical application of Li-S batteries and provide a simple approach to determine the efficiency of sulfur utilization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available