4.6 Article

Curcumin Reduces Cognitive Deficits by Inhibiting Neuroinflammation through the Endoplasmic Reticulum Stress Pathway in Apolipoprotein E4 Transgenic Mice

Journal

ACS OMEGA
Volume 6, Issue 10, Pages 6654-6662

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.0c04810

Keywords

-

Funding

  1. National Natural Science Foundation of China [31872311]
  2. Science Foundation for Outstanding Young Scholars of Henan Province [212300410027]

Ask authors/readers for more resources

The study found that curcumin can reduce the high expression of ApoE4 and excessive release of inflammatory factors in ApoE4 transgenic mice, improving cognitive ability by inhibiting endoplasmic reticulum stress.
Apolipoprotein E4 (ApoE4) is the main genetic risk factor for Alzheimer's disease (AD), but the exact way in which it causes AD remains unclear. Curcumin is considered to have good therapeutic potential for AD, but its mechanism has not been clarified. This study aims to observe the effect of curcumin on ApoE4 transgenic mice and explore its possible molecular mechanism. Eight-month-old ApoE4 transgenic mice were intraperitoneally injected with curcumin for 3 weeks, and the Morris water maze test was used to evaluate the cognitive ability of the mice. Immunofluorescence staining, immunohistochemistry, western blotting, and enzyme-linked immunosorbent assay (ELISA) were used to examine the brain tissues of the mice. Curcumin reduced the high expression of ApoE4 and the excessive release of inflammatory factors in ApoE4 mice. In particular, the expression of marker proteins of endoplasmic reticulum (ER) stress was significantly increased in ApoE4 mice, while curcumin significantly reduced the increase in the expression of these proteins. Collectively, curcumin alleviates neuroinflammation in the brains of ApoE4 mice by inhibiting ER stress, thus improving the learning and cognitive ability of transgenic mice.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available