4.7 Article

A poro-damage phase field model for hydrofracturing of glacier crevasses

Journal

EXTREME MECHANICS LETTERS
Volume 45, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.eml.2021.101277

Keywords

Hydrofracture; Phase field model; Poro-damage mechanics; Glacier crevasses; Iceberg calving

Funding

  1. National Science Foundation's Office of Polar Programs, USA [PLR-1341428, PLR-1847173]

Ask authors/readers for more resources

This study introduces a novel poro-damage phase field model for hydrofracturing of glacier crevasses and demonstrates its excellent performance in simulating surface crevasse propagation and cliff failure in glacier terminus regions. The model's applicability for studying glaciers' dynamic response to atmospheric warming is highlighted by comparing its predictions to analytical solutions in linear elastic fracture mechanics.
Hydraulic fracture (or hydrofracture) can promote the propagation of meltwater-filled surface crevasses in glaciers and, in some cases, lead to full-depth penetration that can enhance basal sliding and iceberg calving. Here, we propose a novel poro-damage phase field model for hydrofracturing of glacier crevasses, wherein the crevasse is represented by a nonlocal damage zone and the effect of hydrostatic pressure due to surface meltwater is incorporated based on Biot's poroelasticity theory. We find that the elastic strain energy decomposition scheme of Lo et al. (2019) with an appropriate fracture energy threshold can adequately represent the asymmetric tensile-compressive fracture behavior of glacier ice subjected to self-gravity loading. We assessed the performance of the model against analytical linear elastic fracture mechanics solutions by comparing their predictions of maximum crevasse penetration depth. The model simulates both surface crevasse propagation in the interior region of the glacier, as well as cliff failure in the terminus region. The excellent performance of the proposed model for air/water-filled surface crevasses in idealized land-and marine-terminating grounded glaciers illustrates its applicability to studying the dynamic response of glaciers to atmospheric warming. (C) 2021 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available