4.8 Article

Bioreduction of Chromate in a Methane-Based Membrane Biofilm Reactor

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 50, Issue 11, Pages 5832-5839

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.5b06177

Keywords

-

Funding

  1. State Key Laboratory of Urban Water Resource and Environment (Harbin Institute of Technology) [QAK201605]
  2. National Natural Science Foundation of China [21377109, 21577123]
  3. Fundamental Research Funds for the Central Universities
  4. Public Welfare Project of the Science and Technology Department of Zhejiang Province [2015C33016]

Ask authors/readers for more resources

For the first time, we demonstrate chromate (Cr(VI)) bioreduction using methane (CH4) as the sole electron donor in a membrane biofilm reactor (MBfR). The experiments were divided into five stages lasting a total of 90 days, and each stage achieved a steady state for at least 15 days. Due to continued acclimation of the microbial community, the Cr(VI)-reducing capacity of the biofilm kept increasing. Cr(VI) removal at the end of the 90-day test reached 95% at an influent Cr(VI) concentration of 3 mg Cr/L and a surface loading of 0.37g of Cr m(-2) day(-1). Meiothermus (Deinococci), a potential Cr(VI)-reducing bacterium, was negligible in the inoculum but dominated the MBfR. biofilm after Cr(VI) was added to the reactor, while Methylosinus, a type II methanotrophs, represented 11%-21% of the total bacterial DNA in the biofilm. Synergy within a microbial consortia likely was responsible for Cr(VI) reduction based on CH4 oxidation. In the synergy, methanotrophs fermented CH4 to produce metabolic intermediates that were used by the Cr(VI)-reducing bacteria as electron donors. Solid Cr(III) was the main product, accounting for more than 88% of the reduced Cr in most cases. Transmission electron microscope (TEM) and energy dispersive X-ray (EDS) analysis showed that Cr(III) accumulated inside and outside of some bacterial cells, implying that different COO -reducing mechanisms were involved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available