4.7 Review

Androgen-Driven Fusion Genes and Chimeric Transcripts in Prostate Cancer

Journal

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fcell.2021.623809

Keywords

androgen receptor; androgens; prostate cancer; fusion gene; fusion transcript; castration-resistant prostate cancer; TMPRSS2; ERG; lncRNA

Funding

  1. Sigrid Juselius Foundation
  2. Cancer Society of Finland
  3. Foundation of the Finnish Cancer Institute
  4. Academy of Finland [317871]
  5. Academy of Finland (AKA) [317871, 317871] Funding Source: Academy of Finland (AKA)

Ask authors/readers for more resources

Androgens and their receptor play crucial roles in various diseases, particularly in prostate cancer. Genetic fusions regulated by androgens are more common in prostate cancer compared to other tumors, raising questions that require further investigation.
Androgens are steroid hormones governing the male reproductive development and function. As such, androgens and the key mediator of their effects, androgen receptor (AR), have a leading role in many diseases. Prostate cancer is a major disease where AR and its transcription factor function affect a significant number of patients worldwide. While disease-related AR-driven transcriptional programs are connected to the presence and activity of the receptor itself, also novel modes of transcriptional regulation by androgens are exploited by cancer cells. One of the most intriguing and ingenious mechanisms is to bring previously unconnected genes under the control of AR. Most often this occurs through genetic rearrangements resulting in fusion genes where an androgen-regulated promoter area is combined to a protein-coding area of a previously androgen-unaffected gene. These gene fusions are distinctly frequent in prostate cancer compared to other common solid tumors, a phenomenon still requiring an explanation. Interestingly, also another mode of connecting androgen regulation to a previously unaffected gene product exists via transcriptional read-through mechanisms. Furthermore, androgen regulation of fusion genes and transcripts is not linked to only protein-coding genes. Pseudogenes and non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs) can also be affected by androgens and de novo functions produced. In this review, we discuss the prevalence, molecular mechanisms, and functional evidence for androgen-regulated prostate cancer fusion genes and transcripts. We also discuss the clinical relevance of especially the most common prostate cancer fusion gene TMPRSS2-ERG, as well as present open questions of prostate cancer fusions requiring further investigation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available