4.7 Article

Combined Administration of Metformin and Atorvastatin Attenuates Diabetic Cardiomyopathy by Inhibiting Inflammation, Apoptosis, and Oxidative Stress in Type 2 Diabetic Mice

Journal

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fcell.2021.634900

Keywords

metformin; atorvastatin; diabetic cardiomyopathy; inflammation; apoptosis; oxidative stress

Funding

  1. National Natural Science Foundation of China [81770305, 81900326]
  2. Foundation for Distinguished Young Scholars of Sichuan Province [2019JDJQ0042]
  3. Sichuan Science and Technology Innovation Miaozi Project [2018071]
  4. Innovative Team Project of Chengdu Medical College [CYTD17-01]
  5. Fund of Development and Regeneration Key Laboratory of Sichuan Province [SYS18-04]
  6. State Undergraduate Innovative Experiment Program [201813705007, 201813705008]
  7. Scientific Research Fund of Sichuan Provincial Education Department [18ZA0144]
  8. Key Research and Development Support Plan of Chengdu [2019-yf05-00275-SN]

Ask authors/readers for more resources

The combination therapy of metformin and atorvastatin showed superior protective effects against diabetic cardiomyopathy by inhibiting oxidative stress and inflammation, as well as reducing apoptosis of cardiomyocytes. This effect may be related to the activation of AMPK/SIRT1 signaling pathway.
Diabetic cardiomyopathy (DCM), a common complication of diabetes mellitus, may eventually leads to irreversible heart failure. Metformin is the cornerstone of diabetes therapy, especially for type 2 diabetes. Statins are widely used to reduce the risk of cardiovascular diseases. In this study, we aimed to investigate whether the combined administration of metformin and atorvastatin could achieve superior protective effects on DCM and to elucidate its molecular mechanism. Here, db/db mice (9-10 weeks old) were randomly divided into four groups, including sterile water group (DM), metformin group (MET, 200 mg/kg/day), atorvastatin group (AVS, 10 mg/kg/day), and combination therapy group (MET + AVS). Mice were treated with different drugs via gavage once per day for 3 months. After 3 months of treatment, the pathological changes (inflammation, fibrosis, hypertrophy, and oxidative stress makers) were detected by histopathological techniques, as well as Western blotting. The H9C2 cardiomyocytes were treated with palmitate (PAL) to mimic diabetic condition. The cells were divided into control group, PAL treatment group, MET + PAL treatment group, AVS + PAL treatment group, and MET + AVS + PAL treatment group. The effects of MET and AVS on the cell viability and inflammation of H9C2 cells subjected to PAL condition were evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay, immunofluorescence staining, and Western blotting. Both MET and AVS prevented diabetes-induced fibrosis, hypertrophy, and inflammation. The combination therapy showed superior effects in protecting myocardial tissue against diabetes-induced injury. Mechanistically, the combination therapy significantly inhibited oxidative stress and the expression levels of inflammation-related proteins, e.g., NLRP3, caspase-1, interleukin-1 beta (IL-1 beta), Toll-like receptor 4 (TLR4), and P-p65/p65, in both cardiac tissues and H9C2 cells. TUNEL assay showed that the combination therapy significantly attenuated the apoptosis of cardiomyocytes; decreased the expression level of pro-apoptotic-related proteins, such as cleaved caspase-3 and BAX; and enhanced the expression level of anti-apoptotic protein (Bcl-2). Furthermore, the combination therapy remarkably upregulated the expression levels of 5 '-AMP-activated protein kinase (AMPK) and SIRT1. Our findings indicated that the anti-inflammation and anti-apoptosis effects of the combination therapy may be related to activation of AMPK/SIRT1 signaling pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available