4.5 Review

Nuclease resistance of DNA nanostructures

Journal

NATURE REVIEWS CHEMISTRY
Volume 5, Issue 4, Pages 225-239

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41570-021-00251-y

Keywords

-

Ask authors/readers for more resources

DNA nanotechnology has advanced from structural design to application-oriented research, facing challenges such as susceptibility to nuclease attack in biological applications. Recent strategies have been developed to enhance nuclease resistance of DNA nanostructures, with studies focusing on stability in biological fluids.
DNA nanotechnology has progressed from proof-of-concept demonstrations of structural design towards application-oriented research. As a natural material with excellent self-assembling properties, DNA is an indomitable choice for various biological applications, including biosensing, cell modulation, bioimaging and drug delivery. However, a major impediment to the use of DNA nanostructures in biological applications is their susceptibility to attack by nucleases present in the physiological environment. Although several DNA nanostructures show enhanced resistance to nuclease attack compared with duplexes and plasmid DNA, this may be inadequate for practical application. Recently, several strategies have been developed to increase the nuclease resistance of DNA nanostructures while retaining their functions, and the stability of various DNA nanostructures has been studied in biological fluids, such as serum, urine and cell lysates. This Review discusses the approaches used to modulate nuclease resistance in DNA nanostructures and provides an overview of the techniques employed to evaluate resistance to degradation and quantify stability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available